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SUMMARY
A number of methods of solving sets of linear equations and inverting matrices

are discussed. The theory of the rounding-off errors involved is investigated for
some of the methods. In all cases examined, including the well-known 'Gauss
elimination process', it is found that the errors are normally quite moderate: no
exponential build-up need occur.

Included amongst the methods considered is a generalization of Choleski's method
which appears to have advantages over other known methods both as regards
accuracy and convenience. This method may also be regarded as a rearrangement
of the elimination process.

THIS paper contains descriptions of a number of methods for solving sets
of linear simultaneous equations and for inverting matrices, but its main
concern is with the theoretical limits of accuracy that may be obtained in
the application of these methods, due to rounding-off errors.

The best known method for the solution of linear equations is Gauss's
elimination method. This is the method almost universally taught in
schools. It has, unfortunately, recently come into disrepute on the ground
that rounding off will give rise to very large errors. It has, for instance,
been argued by HoteUing (ref. 5) that in solving a set of n equations we
should keep nlog104 extra or 'guarding' figures. Actually, although
examples can be constructed where as many as «log102 extra figures
would be required, these are exceptional. In the present paper the
magnitude of the error is described in terms of quantities not considered
in HoteUing's analysis; from the inequalities proved here it can imme-
diately be seen that in all normal cases the Hotelling estimate is far too
pessimistic.

The belief that the elimination method and other 'direct' methods of
solution lead to large errors has been responsible for a recent search for
other methods which would be free from this weakness. These were
mainly methods of successive approximation and considerably more
laborious than the direct ones. There now appears to be no real advantage
in the indirect methods, except in connexion with matrices having special
properties, for example, where the vast majority of the coefficients are
very small, but there is at least one large one in each row.

The writer was prompted to cany out this research largely by the
practical work of L. Fox in applying the elimination method (ref. 2). Fox
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288 A. M. TURING

found that no exponential build-up of errors such as that envisaged by
Hotelling actually occurred. In the meantime another theoretical investi-
gation was being carried out by J. v. Neumann, who reached conclusions
similar to those of this paper for the case of positive definite matrices, and
communicated them to the writer at Princeton in January 1947 before the
proofs given here were complete. These results are now published (ref. 6).

1. Measure of work in a process
It is convenient to have a measure of the amount of work involved in

a computing process, even though it be a very crude one. We may count
up the number of times that various elementary operations are applied in
the whole process and then give them various weights. We might, for
instance, count the number of additions, subtractions, multiplications,
divisions, recordings of numbers, and extractions of figures from tables.
In the case of computing with matrices most of the work consists of
multiplications and writing down numbers, and we shall therefore only
attempt to count the number of multiplications and recordings. For this
purpose a reciprocation will count as a multiplication. This is purely
formal. A division will then count as two multiplications; this seems a
little too much, and there may be other anomalies, but on the whole
substantial justice should be done.

2. Solution of equations versus inversion
Let us suppose we are given a set of linear equations Ax = b to solve.

Here A represents a square matrix of the nth order and x and b vectors
of the nth order. We may either treat this problem as it stands and
attempt to find x, or we may solve the more general problem of finding
the inverse of the matrix A, and then allow it to operate on b giving the
required solution of the equations as x = A - 1b. If we are quite certain
that we only require the solution to the one set of equations, the former
approach has the advantage of involving less work (about one-third the
number of multiplications by almost all methods). If, however, we wish
to solve a number of sets of equations with the same matrix A it is more
convenient to work out the inverse and apply it to each of the vectors b.
This involves, in addition, n2 multiplications and n recordings for each
vector, compared with a total of about \n3 multiplications in an independent
solution. There are other advantages in having an inverse. From the
coefficients of the inverse we can see at once how sensitive the solution
is to small changes in the coefficients of A and of b. We have, in fact,

 by guest on June 7, 2012
http://qjm

am
.oxfordjournals.org/

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org/


ROUNDING-OFF ERRORS IN MATRIX PROCESSES 289

This enables us to estimate the accuracy of the solution if we can judge
the accuracy of the data, that is, of the matrix A and the vector b, and
also enables us to correct for any small changes which we may wish to
make in these data.

It seems probable that with the advent of electronic computers it will
become standard practice to find the inverse. This time has, however, not
yet arrived and some consideration is therefore given in this paper to
solutions without inversion. A form of compromise involving less work
than inversion, but including some of the advantages, is also considered.

3. Triangular resolution of a matr ix
A number of the methods for the solution of equations and, more

particularly, for the inversion of matrices, depend on the resolution of a
matrix into the product of two triangular matrices. Let us describe
a matrix which has zeros above the diagonal as 'lower triangular' and
one which has zeros below as 'upper triangular'. If in addition the
coefficients on the diagonal are unity the expressions 'unit upper
triangular' and 'unit lower triangular' may be used. The resolution is
essentially unique, in fact we have the following

THEOREM ON TRIANGULAR RESOLUTION. / / the principal minors of the
matrix A are non-singular, then there is a unique unit lower triangular
matrix L, a unique diagonal matrix D, with non-zero diagonal elementSj and
a unique unit upper triangular matrix U such that A = LDU. Similarly
there are unique L', D', U' such that A = U'D'L'.

The kth diagonal element of D will be denoted by dk. The \k coefficient
of the equation A = LDU gives us lndtulk = alk and since lu = un = 1
this determines dt to be au and ulk to be a^/d^, these choices satisfy the
equations in question. Suppose now that we have found values of lti, uik

with,; < i0 (that is, we have found the first i0— 1 rows of L and columns of U)
and the first i0— 1 diagonal elements dk, so that the equations arising from
the first i0—1 rows of the equation A = LDU are satisfied; .and suppose
further that these choices are unique and dk ^ 0. It will be shown how
the next row of L and the next column of U, and the next diagonal
element du 7̂  0 are to be chosen so as to satisfy the equations arising from
the next row of A = LDU, and that the choice is unique. The equations
to be satisfied in fact state

i

The right-hand sides of these equations are entirely in terms of quantities
already determined. When k = i0 the first equation is satisfied and can
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290 A. M. TURING

only be satisfied by putting dio — right-hand side, determining dit. The
equations for k > i0 can then be satisfied by one and only one set of values
of u{ok, provided dia ^ 0. The equations for k < i0 can also be satisfied by
one and only one set of values of liok, since each dk is different from 0 The
new diagonal element d^ is not 0 because the ioth principal minor of A is
equal to the product of the first i0 diagonal elements dk.

4. The elimination method
Suppose that we wish to solve the equations Ax = b by the elimination

method. The procedure is as follows. We first add such multiples of the
first equation to the others that the coefficient of xx is reduced to zero in
all of them (excepting the first). We then add multiples of the second
equation to the later ones until the coefficient of x2 is reduced to zero.
After re—1 steps of this nature we shall be left with a set of equations of
the form 2 vaxj — c<- From the equation vnnxn = cn the unknown xn

can then be found immediately, and by substituting it in the equation
vrs-i,n-ixn-i+vn-i,nxn = cn-i we then find xn_lt and so on until by
repeated back-substitution we have found all the coefficients of the
(originally) unknown vector x. This description of the elimination process
is all that is required in order to apply it. We shall find it instructive,
however, to look at it further from a number of points of view.

(1) The process of replacing the rows of a matrix by linear combinations
of other rows may be regarded as left-multiplication of the matrix by
another matrix, this second matrix having coefficients which describe the
linear combinations required. Each stage of the above-described elimina-
tion process is of this nature, so that we first convert the equations Ax = b
into JjAx = J x b and record JXA and J ^ . We then convert them into
J2 J j Ax = J2 Jxb, and so on, until we finally have Jn_l...J1 Ax = Jn-V.. J jb .
In accordance with the theorem on triangular resolution we may write
«Jn_i...Ji = Lr1andJn_1...J1A = DU. The matrix DU is upper triangular,
that is, it has no coefficients other than zeros below the diagonal. The
matrix L - 1 and its inverse L are lower triangular.

(2) The matrix L can be very easily obtained from the matrices
n - l

Jv..., Jn_i. We have in fact L = 1+ }T (1—Jr)- The proof of this will
r-=l

be left to the reader.
(3) There is no need for us to take either the equations or the unknowns

in the order in which they are given. In other words, if P, 0 represent
permutations we may solve instead A'x' = b ' , where A' = PAQ, b ' = Pb,
x = Ox'. The permutations F. 0 may be chosen bit by bit as we carry
the process through. One popular method is to let 0 be the identity, that is,
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ROUNDING-OFF ERRORS IN MATRIX PROCESSES 291

to take the variables in the order given, and to choose P so that the
coefficients in the matrices J r do not exceed unity in absolute magnitude.
This is always possible, and for almost all matrices gives a unique P .
Alternatively, this variation of the method may be described by saying
that P is chosen so that d^ shall have the largest possible value, and subject
to this, d2 to be as large as possible, and so on. This procedure is called
'taking the largest coefficient in the column as pivot'. The diagonal
elements dv d2,..., dn are known as the first, second,..., last pivots. There
seems to be a definite advantage in using the largest pivot in the column
as it is likely to have smaller proportionate errors than other possible
pivots, and saves us from the embarrassment of getting a pivot which is
little different from zero. I t is possible that there is also a further advan-
tage in choosing the largest coefficient in the matrix as pivot.

(4) The leading terms of the work involved in solving a set of n equations
by the elimination method are as follows: \nz-\-O(n2) multiplications and
recordings of v.v'ch \n2-\-O(n) recordings involve the vector b.

(5) If, after we have solved one set of equations Ax = b, we are asked
to solve a second set Ax' = b ' with the same matrix A, we have only to
operate on b with the matrices J l v . . , J n - 1 the values of which may be
supposed to have been kept for reference, and then solve DUx = Jn_1...J1b.
In other words, if the matrices 3X Jn-i have been kept (amounting to
\n(n—1) numbers) the work involved in solving a second set with the
same A is that part of the original work which involved b, namely,
\w?-\-O(ri) multiplications and n recordings.

This process may also be expressed in another form, which appears to
be quite different, but actually is an identical calculation. As mentioned
in (2), the triangle L in the resolution A = LDU may be obtained imme-
diately from the matrices Jj,..., J n _ r If we put DUx' = y' we shall then
have Ly' = b ' . The equations Ly' = b ' may be solved for y' by one back-
substitution process and then the equation DUx' = y' solved by a second
back-substitution.

(6) As we have described it, the matrices 31 A, J 2 i 1 A,..., are all written
down in full. Actually, however, we are not really interested in all the
coefficients of all these matrices. All we need in the end are Jlt..., Jn_j
and Jn_1...J1A. It is sufficient, therefore, to calculate all coefficients of
Jn_1...J1A, and those coefficients of ^ . . . t^A which are required for the
determination of Jr+1. If we write A(r) for ^ . . . J ! A we have

A(.rX)

where (Jr)fr = —r^rr , .
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292 A. M. TURING

and by addition

Ag> = Atj+ i i

If i < r we have A$ = A^~1( and so

A#> = A, ,+n i \

Thus we can obtain the numbers actually required (A^, (Jr)ir) without
recording intermediate quantities. This variation of the elimination
method will be seen to be identical with the method (1) of § 6 (the
'unsymmetrical Choleski method').

This form of the elimination method is to be preferred to the original
form in every way. The recording involved in the work on the matrix is
reduced from \v?-\-O(n2) to n2-\-O(n), and the rounding off is at the same
time made correspondingly less frequent.

(7) The elimination method may be used to invert a matrix. One
method is to solve a succession of sets of equations Ax<r) = b(r), where
b<r> = Sir. The total work involved in the inversion is then n3-\-O(n2)
multiplications. Alternatively, we may invert the matrices L and DU
separately by back-substitution and then multiply them together. The
work is still n3-\-O(n2) multiplications.

(8) When the matrix A is symmetric, the matrices L and U are trans-
poses, and it is therefore unnecessary to calculate both of them. The best
arrangement is probably to proceed as with an unsymmetrical matrix, but
to ignore all the coefficients below the diagonal in the matrices A<r>. These
coefficients are all either zero or equal to the corresponding elements of the
transpose. This fact enables us to find the appropriate matrices J r at each
stage.

(9) The elimination method can be described in another, superficially
quite unrelated form. We may combine multiplication of rows and addition
to other rows with multiplication of columns and adding to other columns.
In other words, we may form a product Jn_1...J1AK1...Kn_1, and try to
arrange that it shall be diagonal. The matrix J r is to differ from unity
only in the rth column below the diagonal, and Kr is to differ from unity
only in the rth row above the diagonal. If we carry out the multiplications
by Jx Jn-i before the multiplications by K1;..., Kn_lt then it is clear that
we have only the elimination method, for in either case we form J^A,
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J2 J t A,... and the multiplications by K^..., Kn_x which come after actually
involve no computation; they msrely result in replacing certain coefficients
in the matrix Jn_1...J1A by zeros (compare note (2)). I t is not quite so
clear in the case where the order of calculation is A, .^A, JJAKJ,

J 2 Jx AKX In this case, however, the right-multiplications do not alter
that part of the matrix which will be required later; in fact, they again
do nothing but replace certain coefficients by zeros. So far as the subse-
quent work is concerned, we may consider that these right-multiplications
were omitted, and that we formed Jn_i... Jx A as in the elimination method.

When this method is used and we choose the largest pivot in the matrix,
it is clear that all the coefficients of J r and of K, do not exceed unity.
This provides one proof that when the largest pivot in the matrix is chosen
the coefficients of L, U do not exceed unity (in absolute magnitude).

5. Jordan's method for inversion
In § 4(1) we mentioned that the elimination process could be regarded

as the reduction of a matrix to triangular form by left-multiplication of it
by a sequence of matrices J1(..., Jn_i- In the Jordan method we left-
multiply the matrix A by a similar sequence of matrices. The difference
is that with the Jordan method we aim at reducing A to a diagonal,! or
preferably to the unit matrix, instead of merely to a triangle.f

The process consisto m. forming the successive matrices Jx A, J2 Jx A,...,
where J r differs from the unit matrix only in the rth column, and where
J r...JxA differs from a diagonal matrix only in the columns after the rth.

Let us put AW = Jr...J1A, X<« = J,...^,
we shall then have

AS1""1*

(so that M$ = 0 if

Ag> = (Jr),r

The particular diagonal to which A is reduced is at our disposal.
Possible choices include the following. The diagonal may be the unit
matrix. Or we may arrange that the diagonal elements of the J r are all
unity and tolerate the non-unit diagonal elements in Jn...JxA. A third
alternative is to arrange that the diagonal elements in Jn...JxA shall be
between 0-1 and 1 and that the diagonal elements in J r shall be powers of 10.

t Hereafter 'triangle' and 'diagonal' will be written for 'triangular matrix' and 'diagonal
matrix'.
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294 A. M. TURING

Jordan's method is probably the most straightforward one for inversion.
Although it can be used for the solution of equations, it is not very
economical for that purpose. For hand work it has the serious disadvan-
tage that the recording is very heavy and cannot be avoided by methods
such as that suggested in connexion with the elimination method. It may
be the best method for use with electronic computing machinery.

6. Other methods involving the triangular resolution
There are several ways of obtaining the triangular resolution. When it

has been obtained, it can be used for the solution of sets of equations, or
for the inversion of the matrix as has been described under the elimination
method. Possible methods of resolution are described below.

(1) We may use the formulae given in the proof of the theorem on
triangular resolution. This involves $v?-\-O(nz) multiplications, n2-\-O(n)
recordings. This method is closely related to Choleski's method for sym-
metrical matrices ((7) below), and we may therefore describe it as the
'unsymmetrical Choleski method'.

(2) We may apply the elimination method, regarded as a means of
obtaining the triangular resolution; see notes (1), (2), (6) on the elimination
method.

(3) We may obtain simultaneously, and bit by bit, the four triangles
L, L,-1, U, U - 1 and the diagonal D. The method makes use of the following
simple facts about triangles:

(a) If we wish to invert a triangle, but only know the values in a sub-
triangle, we can obtain the coefficients of the inverse in the corre-
sponding subtriangle: for example, if we know the first 5 rows of a
lower triangle L, then we can obtain the first 5 rows of L -1 .

(b) If we know the first r columns of a unit lower triangle then we know
its first r + 1 rows: likewise, if we know the first r rows of a unit
upper triangle we know also its first r + 1 columns.

Let us suppose that we have carried the process to the point of knowing
the first r rows of L, the first r—2 of L - 1 and r—\ of U and U -1. We
carry on the inversion of L to obtain the (r—l)th and rth rows of L -1 ,
and then multiply these rows into A to obtain the rth and (r—l)th rows
of L-1A, i.e. of DU. From this we obtain at once the rth and (r—l)th
rows of D, and dividing obtain the rth and (r— l)th rows of U. By (b) we
have the rth and (r+l)th columns of U and by (a) obtain those of U"1.
Multiplying we obtain the rth and (r+l)th columns of AU"1, i.e. of LD,
and from this the rth and (r+l)th elements of D and columns of L. By
(6) we have the (r+l)th and (r+2)th rows of L.

We can, of course, arrange to increase r by 1 instead of 2 at each stage.
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This is essentially Morris's escalator method (ref. 4), so called because
by breaking off the work at any stage we obtain the solution for one of
the principal minors of A; the order of the minor increases in steps.
Morris's method differs in one small point. The diagonal elements D are
not obtained as the diagonal of L-1A or of AU-1, but by using the identity
dk = akk— 2 (AU-1)tidf1(L~1A)ifc, which follows from the (kk) coefficient

i<k

of the matrix equation A = (AU~1)D-1(L-1A).
If Morris's method is used for the inversion of a matrix the work

involved consists of |w3+O(n2) multiplications (two triangle inversions
each $n3-\-O(n2), two multiplications of a triangle by A, each \nz-\-O(n2),
and one multiplication of two triangles f opposite type, \nz-\-O[n2)), and
3w3+0(ra2) recordings (this can be slightly reduced). It does not appear
to be especially satisfactory in either respect.

To relate the above ;j.ocount to Morris's put
qk = dk, Xi = (U-*)u, Vi = (£/-%,. . , x\ = ( £ - % , y\ = {Lr1)*,

(4) We may look for an upper triangular matrix M such that
M*A*AM = 1,

that is, so that AM is orthogonal. From the first r rows of M (which are also
the first r columns of M*) we can obtain the first r rows of M* because
of its triangular character, and hence the corresponding rows of M*A*
and M*A*A. The equation M*A*A.M = 1 is then applied, using the
first r columns in the (r+l)th row of the product. This determines the
ratios of the coefficients of M in tbe (r-f-l)th row. The (r+l) th diagonal
element of the equation then determines the multiplying factor. Having
found M and AM we obtain the inverse as M(AM)*, or we may solve
Ax = b by forming (AM)*b and then M(AM)*b. In the terminology of
orthogonal vectors, as described below, the formation of (AM)*b would
be 'expressing b in terms of the base of orthogonal vectors'.

This method is the orthogonalization process described in ref. (3), p. 9.
It is closely related to the Morris method for symmetrical matrices (see (5)
below). We may apply Morris's method by forming A*A and then looking
for the upper triangular matrix M to satisfy M*A*AM = 1. This would
only involve A through the formation of A*A and hence of MA*A. Thus
Morris's method applied to the normalized matrix A*A differs from the
orthogonalization process only in that M*A*A is obtained as M*(A*A)
instead of as (M*A*)A.

We now come to methods for symmetrical matrices. These can all be
made to provide methods for unsymmetrical matrices by normalizing the
given matrix, that is, forming AA* from A. For instance, if we wish to solve
Ax = b, we may form A*A and A*b, and then solve A*Ax = A*b by
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296 A. M. TURING

one of jhese methods. This normalizing technique is, however, of doubtful
value. The formation of A*A involves \nz-\-O(n2) multiplications, so that
the work involved is greater with normalization than without, in the case
of solving equations, and is no less for the case of inversion. Moreover,
normalizing tends to make equations more 'ill-conditioned' (see § 8 below).

(5) A scheme mentioned in note (8) under the elimination method.
(6) We may apply the method (1), but we shall only need to find L and

D, since U = L*. As a slight variation we may find LD.
(7) Another variation on (6) is to find LD*. This method is due to

Choleski (ref. 1). The matrix LD* may involve some pure imaginary
numbers, but no strictly complex ones.

(8) Morris's method simplifies considerably for symmetric matrices.
From the first r rows of L we can obtain the first r columns of L*-1, i.e. U"1,
by inverting. Left-multiplication by A gives the first r columns of AU-1,
i.e. of LD, and from this we obtain the first ( r+1) rows of L. Again Morris
obtains D different^.

This method is identical with a variation of the orthogonalization
method, applicable to symmetric matrices and due to L. Fox (ref. 2).
Fox regards two vectorsb and c as 'orthogonal' relative to A if (c, Ab) = 0
(scalar product). Fox finds a set of vectors v1; v2,..., vn which are ortho-
gonal in this sense. The vectors Avr may be used as a base for other
vectors: we have in fact

(b,v r) .
A V

The solution of equations is effected by means of the formula

A - i b = ^ ( b > V r )

(vr,Avr)
 r-

I t is best to obtain v1( v2,..., vn by orthogonalizing the unit coordinate-axis
vectors, that is, besides the vectors being orthogonal, vr is restricted to be a
linear combination of e^ e2,..., en, or in other words, to have all coefficients
after the rth equal to 0. In this case the vectors v r are the rows of L-1,
and the orthogonality relation is L~1(AL~1*) = D. The orthogonalization
process by which L~x is found is identical with the inversion of AL~1*D~1.

7. Measure of the magni tude of a m a t r i x

There are a number of ways in which the magnitude of a matrix may
be measured by a real number. They include:

The norm. The norm N(A) of the matrix A is given by

N(A) = (trace A*A)* = ( 2 4 )* -
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The maximum expansion B(A). This is given by

The maximum coefficient M(A). This is the largest coefficient in the
matrix: , , , . . . .

M(A) = max \a{i\.

Of these measures one of the first two above is probably of greatest
theoretical significance. In this paper we deal chiefly with the maximum
coefficient, since it is the most easily computed.

A num^jr of inequalities relating these are listed below.

M(X+Y) < J\1(X)+M(Y) (7.1)
lf(XY) < nM(X)M(Y) (7.2)

B(X t-Y)< B(X)+B(Y) (7.3)
J3(XY) < B(X)B(Y) (7.4)

N(X+Y) < N(X)+N(Y) (7.5)
N(XY) < N(X)N(Y) (7.6)

N(X) < nM(X) (7.7)
M(X) < N(X) (7.8)

M(X) < B(X) (7.9)
B(X) < n*M(X) (7.10)
B(X) < N(X) (7.11)
2V(X) < niB(X) (7.12)

8. Ill-conditioned matrices and equations
When we come to make estimates of errors in matrix processes we shall

find that the chief factor limiting the accuracy that can be obtained is
'ill-conditioning' of the matrices involved. The expression 'ill-conditioned'
is sometimes used merely as a term of abuse applicable to matrices or
equations, but it seems most often to carry a meaning somewhat similar
to that defined below.

Consider the equations
l-4x+0-9y = 2-7 >

— O-Sx+l-ly = —1-2 )

and form from them another set by adding one-hundredth of the first to
the second, to give a new equation replacing the first

— 0-186x+l-709y = —1-173

-0-800Z+1-7001/

The set of equations (8.2) is fully equivalent to (8.1), but clearly if we
attempt to solve (8.2) by numerical methods involving rounding-off errors

= -1-200 I
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298 A. M. TURING

we are almost certain to get much less.accuracy than if we worked with
equations (8.1). We should describe the equations (8.2) as an ill-conditioned
set, or, at any rate, as ill-conditioned compared with (8.1). It is charac-
teristic of ill-conditioned sets of equations that small percentage errors in
the coefficients given may lead to large percentage errors in the solution.
Tf we are required to solve the equations Ax = b, but the coefficients used
tre those of A—S instead of those of A, S being a small matrix, then, to
a-st order in S, the solution obtained v/ill be xo+A-1Sxo , where x0 is the

correct solution. We may average the effect of this over a random popula-
tion of matrices S, and over the coefficients in the solution and matrix,
and we shall find the

R.M.S. error of coefficients of solution
R.M.S. coefficient of solution

1 jir/A XXT/A-I»R-M.S. error of coefficients of A
= n ( ' ( ' R.M.S. coefficient of A '

This equation suggests that we might take either N-(A)N(A~l) or

- N(A)N(A~1) as a measure of the degree of ill-conditioning in a matrix.
n

We will adopt the latter and call - ^(A)^(A - 1) the N-condition number of A.
n

We will also use nM(A)M(A-1) as another measure of ill-conditioning and
call it the M-condition number of A. There is substantial agreement
between the two measures, though the M-number tends to be the larger,
especially with diagonal or nearly diagonal matrices.

It should be noted that if all the coefficients of a matrix are multiplied
by the same factor the condition numbers are unaltered, but that if a row
or column is multiplied, by a very large or a very small number the
condition numbers are usually increased. For instance, the matrices

/ 0-8 0-6\ / 0-008 0-006\
(8.3) and (8.4)

\ - 0 - 6 0-8/ \—0-6 0-8 /

have the M-condition numbers 1-28 and 128 respectively and i^-condition
numbers 1 and 50- 005. This may be considered quite a satisfactory
example of the application of the definition. In practice one will tend to
work with the same number of figures throughout a matrix, and the small
values in the first row of (8.4) will prejudice the accuracy obtainable,
because of the number of significant figures available. It is certainly true
that a trivial modification improves the conditioning, but we should
consider that until the possibility of this modification has been observed
and action taken, the matrix remains ill-conditioned.
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It is often stated that ill-conditioned matrices are ones which have
small determinants, that is, small considering the magnitudes of the
coefficients. This statement contains a certain amount of truth. It is
certainly the case that bad conditioning and small determinants tend to
go together. However, the determinant may differ very greatly from the
above-defined condition numbers as a measure of conditioning. This may
be illustrated by the cases of the matrices

{\ 0 0\ / I 0 0 \ / I 1
0 01 01 ; (0 1 1 j ; ( l 11
0̂ 0 0 1 / \0 0 0-01/ \ l 1

all of which have the determinant 0-01, and which have the M-condition
numbers 30, 300, 69-3, 612, respectively, and ^-condition numbers 4-77,
47-1, 33-0, 232.

The best conditioned matrices are the orthogonal ones, which have
.^-condition numbers of 1. Their M-condition numbers are mostly of the
order of magnitude of logn (for large order n). If the coefficients of a
matrix are chosen at random from a normal population we shall get
^/"-condition numbers of the order of ra* and M-condition numbers about
log n times greater. Thus random matrices are only slightly ill-conditioned.

The matrices which occur in practical problems are by no means random
in this sense. There is a very large class of problems which naturally give
rise to highly ill-conditioned equations. Suppose, for example, that we have
reason to believe that some function of position in two dimensions can be
represented by a polynomial of the fourth degree and that we wish to
determine the coefficients. To this end we measure the values of the
function at 25 points, and so obtain 25 linear equations for the desired
coefficients. It may well happen that we are only able to make the
measurements within a small region, and this will certainly mean that
the equations are ill-conditioned. In such a case the equations might be
improved by a differencing procedure, but this will not necessarily be the
case with all problems. Preconditioning of equations in this way will
always require considerable liaison between the experimenter and the
computer, and this will limit its applicability.

9. The classical iterative method
Suppose that B is an approximate inverse of A. Then we can obtain

from it a better inverse B2 by the formula B2 = 2B—BAB. If we write
E = 1—AB, E2 = 1—AB2, so that E and E2 give a measure of the
incorrectness of the two inverses: we have E2 = E2, so that at each
application of this process the error is essentially squared.
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The work involved in applying this method is considerable, since it
involves 2n3 multiplications at each stage. It may be useful in cases
where a good approximate inverse is already available, and 1—AB has
already been calculated, but found to be a little larger than can be
tolerated. We may then calculate B2 but carry the process no farther.
This involves n3 multiplications, but since we may write B2 = B+BE,
the number of figures in one of the factors (viz. in E) may be kept
small.

A somewhat similar type of method applies for the improvement of
solutions of sets of equations. Suppose, for example, we have to solve the
equations Ax = b and that we have obtained a resolution A = L. DU
(say), somewhat inaccurately. By double back-substitution we obtain
a solution xx of L. DUx = b, which is an inaccurate solution of Ax = b.
We may further test this solution by forming the 'residual' vector
bx = b—Axx, and if this is too large we solve Ax = bx to obtain a cor-
rection. In this process we do not obtain 'quadratic convergence' but only
convergence in geometric progression. On the other hand, the method is
very practical because the work involved per stage is only 2n2 multi-
plications.

10. General remarks on error estimates. The error in a reputed
inverse
Error estimates can be of two kinds. We may wish to know how

accurate a certain result is, and be willing to do some additional computa-
tion to find out. A different kind of estimate is required if we are planning
calculations and wish to know whether a given method will lead to accurate
results. In the former case we do not care what quantities the error is
expressed in terms of, provided they are reasonably easily computed.
With these estimates we wish to be absolutely sure that the error is
within the range stated, but at the same time not to state a range which
is very much larger than necessary. With the second type of estimate, the
error is preferably expressed in terms of quantities whose meaning is
sufficiently familiar that the general run of values involved may at least
be guessed at. We are also as much interested in the statistical behaviour
of the errors as in the maximum possible value.

This paper is mainly concerned with estimates of the second kind, since
those of the first kind can be quickly dismissed. Let B be a reputed inverse
of A. To determine its accuracy we form E = 1—AB. Then in view of
the inequalities (7.1), (7.2), and the equation

A - i - B = B(E+E2+...)
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we have

Jf(B-A-i) <J,Jf(BE') < Z

which is the required error estimate. In order to apply this inequality it
is necessary to carry out the matrix multiplication BA, involving n3

multiplications. However, if it is intended to apply the classical iteration
method for improving the inverse at least once, we shall have to calculate
E in doing so, and we shall have 1—AB2 = E2 = E2 and therefore

l-nM(E2) ^ l -

It should be observed that this inequality is only applicable to the
inversion of a matrix, and not to the solution of equations. I t is difficult
to determine the accuracy of the solution of a set of equations without
inverting the matrix. This is another reason why it is preferable to treat
inversion rather than solution of equations as a standard process.

When making estimates of the effects of rounding-off errors we need the
process under examination to be rather minutely described. If, for instance,
a product abc is to be formed, we need to know whether it is obtained as
ab. c or as a. be. If it is obtained as ab. c we shall need to know how many
figures are kept in ab. This may be either a definite number of decimal or
binary places, or a definite number of significant figures, or the number
of figures kept may be made to depend on the results of previous calcula-
tions. Usually, however, by a trivial modification of the quantity recorded,
these latter cases can be reduced to one of the former.

The variety of possible detailed calculation procedures is, of course,
vastly greater than the list of methods which we have considered, for
these can be subdivided into numerous alternatives which appear only
trivially different at first sight, but which may differ very seriously from
the point of view of error estimates. We cannot here carry out the analysis
for more than a very few of the procedures. These have been chosen so as
to give bounds of error which are both reasonably small and also fairly
simple in their analytical form. We have concentrated particularly on
error estimates which can be expressed in terms of the matrix A and its
inverse. In practical work the details of the procedure must be determined
by other considerations. With any particular procedure it will usually be
found possible to obtain some estimate of the type proved in this paper,
but usually quantities such as M(L), M(D~l), etc., will be involved.
These can be obtained conveniently as a by-product in the calculation.
Alternatively, one may find bounds of error by calculating 1—AB as above.
In this case the importance of the analysis which follows is to show that

5092.3
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it is probable that the error obtained will be reasonably small if a process
is used which is somewhat similar to one of those here considered, and that
these methods are therefore reasonable ones to use. Our main purpose in
this paper is to establish that the exponential build-up of errors need r?ot
occur, and this will be proved when we have found one method of inversion
where it is absent.

11. Rounding-off errors in Jordan's method
The Jordan method was described in § 5, but we have now to specify

the details of the'rounding-off and the diagonal. We shall consider the
case where A is reduced to a unit matrix. We assume that in the calcula-
tion of each quantity . (r_1). ir_1)

an error of at most e is made. How this is to be secured need not be
specified, but it is clear that the number of figures to be retained in
A^~1'/A^~1) will have to depend on the values of the A^"1'. Likewise, we
assume that in the calculation of

»—1)

an error of at most e' is made. It is convenient to think of these errors
as quantities deliberately added after the accurate calculation has been
made. If the quantities added after the calculation of A(r), X(r> are the
matrices Sr, S'r we shall have

Jw[...{J,(Ji A+S1)+S,}.. .]+Sn = 1,

Jn[-{J2(J1+s'1)+s^}...]+s; = s,
where 2 represents the actual matrix obtained at the end of the calculation
as the value of A"1.

The equations (11.1) give us

and hence 2 = (l+A-12Xr-
1Sr)A-'(l+ JX^S;). (11.3)

\ r ' » r I

The matrix X, A is the result of the first r stages of the reduction of A
and agrees with D in the first r columns. This fact may be expressed in
the equation (X,A-l)I r = 0, (11.4)

where Ir is that matrix which agrees with the unit matrix in the first r
columns and with the zero matrix elsewhere. It is also clear that X, differs
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from the unit matrix only in the first r columns; this fact may be expressed

in the equation ( X r - l ) ( l - I r ) = 0. (11.5)

From (11.4) and (11.5) we now find X71;
Xr^AL+l-L. (11.6)

When we ignore the second-order terms in the rounding-off errors (11.3),
(11.6) give us

-i-s;). ( 1 L 7 )
r

Let us now assume that each coefficient Sr is at most c and each coefficient
of S'r at most e'. From (11.7) we can estimate the error in if-measure

)}, (11.8)
or in 5-measure,

B(S-A-i) < 2 B{Ir+A-i(l-Ir)}{B(Sr A-i

+e'}, (11.9)
or in i^-measure,

(11.10)
If we use the relations S rI r = SJ.(1—Ir) = 0, which follow from the

restrictions on the coefficients which can suffer rounding-off errors, (11.8)
may be improved to

w ( r a 1 ) ( ^ ^ - 1 ) ) . (11.11)

This result is best possible in the sense that given e, e', M we can find
Sr, S;, A so that M(Sr) < e, M(S'r) < e, M(A~l) = M and the error
ifcf(E—A-1), still ignoring second-order terms, is exactly

, win— 1) , , / , , 2?i—l
ne'+ v

 2 'Mle+e'-\ 3 -

We may also use (11.7) to give us an estimate of the statistical error.
Let the coefficients of the matrices S^..., Sn which are not obliged to be
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0 be *!,..., 8K in some order, and likewise let the coefficients of S^,..., S'n
which are not necessarily zero be sK+1,..., 8P. The equation (11.7) may
then be put in the form

(S-A-% = Icijusu,

where ciiu depends only on the coefficients of A -1. Suppose that the
rounding-off errors su are independent and have standard deviation au

p
and zero mean, then the mean square value of (S—A-1)« is 2 ciiu°u-

Let us put au = 7] for u < K, au = -r\ for u > K and the mean square
K P

error in Ay1 becomes TJ2 2 cyu+7?'2 2 c%u- When we substitute in the
u=l u=K+l

correct values for ciju we obtain:
mean square error in (A-1)^

where r/ is the standard deviation and zero the mean of each coefficient
of Sr, and r/ is the standard deviation and zero the mean of each coefficient
ofs;.

Also
mean square error in (A-1)^

The leading term in the R.M.S. error in (A-1)y is therefore at most

The assumptions M(Sr) < e, M(S'r) < c' in the above analysis state in
effect that we are working to a fixed number of decimal places both in the
reduction of the original matrix to unity and in the building up of the
inverse. I t is not easy to obtain corresponding results for the case where
a definite number of significant figures are kept, but we may make some
qualitative suggestions.

The error when working with a fixed number of decimal places arose
almost entirely from the reduction of the original matrix, and very little
from the building up of the inverse. This, at any rate, applies for the
inversion of ill-conditioned matrices with coefficients of moderate size.
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However, the coefficients of the inverse are larger than those of the
original matrix-, so that if we work to the same number of significant
figures in both we may expect the discrepancy to disappear. The genera)
idea of this may be expressed by putting

M(Sr) < Sif(A), M(S'r) <

There still remains the factor multiplying 8'. This could be removed
M(A)

by arranging to reduce A, not to the unit matrix, 1, but to M(A). 1. This
would be a reasonable procedure in any case, though it would be more
convenient to choose the nearest power of 10 to take the place of M(K).
We see now that it is the .flf-con'lition number nM(A)M(A.~1) which
determines the magnitude of the errors when we work to a definite
number of figures.

In the case of positive definite, symmetric matrices it is possible to give
more definite estimates for the case where calculation is limited to a
specific number of significant figures. Results of this nature have been
obtained by J. v. Neumann and H. H. Goldstine (ref. 6).

It is instructive to compare the estimates of. error given above with
the errors liable to arise from the inaccuracy of the original matrix. If we
desire the inverse of A, but the figures given to us are not those of A but
of A—S, then if we invert perfectly correctly we shall get (A—S)-1 instead
of A"1, that is, we shall make an error of (A—S)"1—A-1, i.e. of

If we ignore the second-order terms this is A-XSA-1. The leading terms

in the error in the Jordan method were A W J (1—I^JSrlA"1 so that we

might say that the greater part of the error is equal to that error which
would have been produced by an original error in the matrix of 2 (l~I|-)S r.

r
It is possible to give error estimates also for several others amongst the

methods suggested elsewhere in this paper. This is, for instance, the case
for the elimination method.

The elimination method in its first phase proceeds similarly to the
Jordan process, but we only attempt to reduce A to a triangle and not
to a diagonal: also the matrix representing the complete operation in this
first phase is triangular.
12. Errors in the Gauss elimination process

We will consider the errors in the Gauss elimination process as con-
sisting of two parts, one arising from the reduction of the matrix to the
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triangular form, and the other from the back-substitution. Of these we
are mainly interested in the error arising from the reduction, since this is
the part of the process which has been most criticized. We adopt the
description of the process given in § 4, note (1), and observe that apart
from a slight difference in the form of the matrices J r, the reduction is
similar to the Jordan process. As in the Jordan process, we shall assume
that we make matrix errors Slf S2,..., Sn in the various stages of the
reduction of A, and vector errors s1, s2,..., sn in the operations on b .
Assuming there are no back-substitution errors, and ignoring the second-
order terms in the errors we should have:

error in x = U-1X;

where X, = Jr...Ji. Now, assuming that the process has been done with
the largest pivot chosen from each column, we shall have M(X71) = 1, for
X 7 1 = 1 + 2 (1-J«) as mentioned in § 4 (2). Then

I error in xm | = |(A-» 2 X r ^ - S , A-»b))m|

= 2 (A-iUXT V 8 r ) * - I (Sr)w(A-%bp
1,k.r UP

where M(s'r) < e', M(Sr) < e.
To these errors we have to add those which arise from the back-substitu-

tion. This consists in solving the equations DUx = L~1b, where U is unit
upper triangular and D diagonal. We obtain xn first and then xT in order
of decreasing r by means of the formula xr = d71(L~1b)r— 2 (DU)ri xt.

i>r

Now if we make an error of tr in the calculation of xr from the previously
obtained coefficients of x, then we shall have solved accurately the
equations DUx = L - I b+Dt , that is, we shall have introduced an error of
U-H, or, since A = LDU, of A-JLDt. If we arrange that M\tT\ ^ ed,1,
the greatest error in any coefficient from this source is n2M(A~1)e, and
normally much smaller than the error arising from the first part of the
process. Furthermore, dr will normally tend to be less than 1.

It is interesting to note the value of the error in the last pivot, that is,
the error in the (nn) coefficient of Jn...Ji A. The matrix error in Jn...J1A
is Xn 2 X,"1^, that is, since Xn L"1 = DUA"1, it is DUA"1 £ X^S,.. The

r r

(nn) coefficient is dn £ " n ^ ^ ^ r ^ n ^ d since-M^X^1) = l,if(Sr) <eitdoes
T

not exceed nHn M(A~1)e in absolute magnitude, that is, the proportionate
error in the last pivot is at most n2M(A-1)e. This cannot be very large
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unless the matrix is ill-conditioned. With worst possible conditioning we
find an error somewhat similar to Hotelling's estimate. The matrix error
in J^.-JjA may be written L ^ J X ^ S , . , from which we find that the

error in the last pivot cannot exceed n^Mfh'1). But since M(L) = 1 we
find ^(L-1) <: 2"-1 (and equality can be attained): that this error may
actually be as great as 2n~2e may be seen by considering the inversion of
a matrix differing only slightly from

1 0 0 . . . 0
—1 1 0 . . . 0
— 1 — 1 1 . . . 0

—1 - 1 —1 . , . 1

It appears then that the error in the last pivot can only be large if L - 1 is
large, and that this can only happen with ill-conditioned equations.
Actually even then we may consider ourselves very unlucky if L - 1 is
large. Normally, even with ill-conditioned equations we may expect the
off-diagonal coefficients of L to be distributed fairly uniformly between
— 1 and 1, possibly with a tendency to be near 0. Only when there is
a strong tendency for negative values will we find a large L-1.

13. Errors in the unsymmetrical Choleski method
When obtaining the triangular resolution of a matrix by the method of

the theorem (§ 3) it is convenient to think of the process as follows. We
are given a matrix A and the matrices L and DU (= W, say). We form
the product LW coefficient by coefficient. When calculating any one of
the coefficients of LW, we always find that the data are incomplete to the
extent of one number, and we therefore choose this number so as to give
the required coefficient in A. The unknown quantity when forming aif is
always either l{j or wti. Regarding the process in this way suggests the
following rule for deciding the number of figures to be retained. We
always retain sufficient figures to give us an error of not more than e in
the coefficient of A under consideration. In actual hand computation this
rule is extremely simple to apply. Suppose, for example, that e is \ 10"7

4

and that we are forming the product (LW)94, i.e. 2 hjwa- We first form
i—i

3

^,hiwj4 accumulating the products in the machine. All the relevant
quantities should be available at this stage. We then set up the multi-
plicand wu which should also be known and 'turn the handle' until the
quantity in the product register, rounded off to seven figures, first agrees

 by guest on June 7, 2012
http://qjm

am
.oxfordjournals.org/

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org/


308 ROUNDING-OFF ERRORS IN MATRIX PROCESSES

with the given value of a9i (which is assumed to have zeros in the eighth
and later figures). All the figures in the multiplier register are then
written down as the value of l9t.

The theory of the errors in this method is peculiarly simple. The
triangular resolution obtained is an exact resolution of a matrix A—S,
where M(S) < e, and the resultant error in the inverse ie A-1SA~1, and
in any coefficient at most n2{M(A.-l)}2e. A similar procedure is appropriate
in the inversion of the triangles L and W. When inverting W (say) we
can arrange, by an exactly similar computing procedure, that its product
with its reputed inverse differs from unity by at most e' in each coefficient,
i.e. LK = 1—S', where iHf(S') < e and K is the reputed inverse. Note
the order in the product which is significant. Likewise we find a reputed
inverse V for DU such that V.DU =-- 1—S" and M(S") < e. The error
arising from using these reputed inverses is — (1—S°)~1VK(1—S')+VK,
or neglecting second-order terms, S"A-1+A~1S'. Finally, there is a
possible source of error due to rounding off in the actual formation of the
product VK. If this does not exceed e" in any coefficient, the error in any
coefficient of the reputed inverse of A is in all at most

n2e{M( A - 1 ) } ^ 2ne'M (A"1)+e".

This paper is published with the permission of the Director of the
National Physical Laboratory.
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