From the collections of the Seeley G. Mudd Manuscript Library, Princeton, NJ

Statement on Copyright Restrictions

These documents can only be used for educational and research purposes ("Fair use") as per U.S. Copyright law (text below). By accessing this file, all users agree that their use falls within fair use as defined by the copyright law. They further agree to request permission of the Princeton University Library (and pay any fees, if applicable) if they plan to publish, broadcast, or otherwise disseminate this material. This includes all forms of electronic distribution.

U.S. Copyright law test

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or other reproduction is not to be "used for any purpose other than private study, scholarship or research." If a user makes a request for, or later uses, a photocopy or other reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement.

Policy on Digitized Collections

Digitized collections are made accessible for research purposes. We have indicated what we know about copyright and rights of privacy, publicity or trademark in our finding aids. However, due to the nature of archival collections, it is not always possible to identify this information. We are eager to hear from any rights owners, so that we may provide accurate information. When a rights issue needs to be addressed, upon request we will remove the material from public view while we review the claim.

Inquiries about these policies can be directed to:

```
Seeley G. Mudd Manuscript Library
65 Olden Street
Princeton, NJ 08540
609-258-6345
609-258-3385 (fax)
mudd@princeton.edu
```


SYSTIEMS OF LOGIC BASED ON ORDINALS

A. M. Turing
(A dissertation presented to the faculty of Princeton University in candidacy for the degree of Doctor of Philosophy)

Reeonmmanded lus tho
Tepartinend of Veathermates: pr acceplave.
hon 1938.

The well knom theorea of Gödel shows that every 3yston of logic is in a certain sense incounlete, but at the same time it indicates means whereby fron a system L of logic a more complete systen L^{\prime} may we obtained. By repeating the process we get a sequence $L_{1}, L_{1}=L^{\prime}, L_{2}=L_{1}^{\prime}, L_{3}=L_{2}^{\prime}$,... of logics each nore conplete than the proceding. A losic L_{G} may then be constmucted in mish the provable theorems axe the totality of theorems provable witi the help of the lozics $L_{1} L_{1}, L_{2}, \ldots$. Ne wry then form $L_{\text {2 }}$ related to L_{ω} in the ame way as L_{ω} ras related to L. Proceeding in this way we can associate 3 system of logic. with any given constructive ordinal. 1
 The situation is not quite so simple as is suggested by this crude argument. See pages 44-48.
logics of this kind is complete in the sense that to any problem A there corresponds an ordinal α such that A is solvable by means of the logic L_{α}. I propose to investigate this problem In a rather more general case, and to give sone other examples of ways in which systems of logic may be associated with constructive ordinala.

1. The calculus of conversion. Gobdel representations.

It will be convenient to be able to use the 'conversion calcuLus' for Church for the description of functions and some other parposes. This will make greater clarity and simplicity of expression possible. I shall Eive a short account of this calculus. For more detailed descriptions see Church [3], [2], Nleene [1],

Church and Poser [1].
The formulae of the calculus are formed from the symbols $\{$, $\}$ $(),,[],, \lambda, S$, and an infinite List of others called variables; we shall take for our infinite list $a, b, \ldots, z, x^{\prime}, x^{\prime \prime}, \ldots$ Certain finite sequences of such symbols are called rell-formed formulae (abbreviated to T.F.F.); we shall define this class induclively, and simultaneously define the free and the bound variables of a K.F.F. Any variable is a W.F.F.; it is its only free variable, and it has no bound variables. δ is a $7 . F . F$. and has no free or bound variables. If M and N are F.F.F. then $\{M\}(\underline{N})$ is a F.F.F. whose free variables are the free variables of M together with the free variables of N, and whose bound variables are the bound vartables of M together with those of N. If M is a F.F.F. and \underline{V} one of its free variables, then $\lambda \underline{V}[M]$ is a $\bar{M} . F . F$. whose free variables are those of M with the exception of \underline{V}, and whose bound variables are those of M together with \underline{V}. No sequence of symbols is a F.F.F. except in consequence of these three statements.

In metarathematical statements we shall use underlined letters to stand for variable or undetermined formulae, as was done in the last paragraph, and in future such letters will stand for well-forwed formulae unless otherwise stated. Small letters underlined will stand for formulae representing undetermined positive integers (see below).
A. W.F.F. is said to be in normal form if it has no parts of the form $\{\lambda \underline{V}[M]\}(\underline{N})$ and none of the form $\{\{S\}(\underline{M})\}(\underline{N})$ where M and N have no free variables.

We may that one w.F.F. is imediately convertible into another if it is obtained from it either by
(i) Replacing one occurrence of a m-11-formed part $\lambda \underline{V}[M]$ by $\lambda \underline{\cup}[\underline{N}]$, where the varlable \underline{U} does not occur in M, and \underline{N} is obtained from M by replacing the varlable \underline{V} by \underline{U} throughout.
(ii) Replacing a well-formed part $\{\lambda \underline{V}[M]\}[(N)$ by the formulae wich is obtained from M by replecing \underline{V} by \underline{N} throughout, provided that the bound variables of \underline{M} are distinct botis from \underline{V} and from the free varlables of N.
(iii) The converse process of ii.
(iv) Replacing a vell-formed part $\{\{S\}(M)\}(M)$ by $\lambda f[\lambda \times[\{f\}(f f\}(x))]]$ if M is in normal form and has no free variables.
(v) Replacing a moll-forged part $\{\{\delta\}(M)\}(N)$ by $\lambda[\lambda x[\{f\}(x)]]$ if M and N are in normal form and not transform able into one anothor by repeated application of i, and have no free variables.
(vi) The converse process of iv.
(vii) The converse process of v.

These rules could have been expressed in such a way that in no cage could there be any doubt as to the admissibility or the result of the transformation (in particular this can be done in the case of process т.).

A formula \underline{A} is said to be convertible Into another \underline{B} (abbreWated to (A conv B^{\prime}) if there is an finite chain of immediate conversions leading from one formula to the other. It is easily
seen that the relation of convertibility is an equivalence relation, ie. it is symmetric, transitive and reflexive.

Since the formulae are liable to be very lengthy weed means for abbreviating then. If we wish to introduce particular letter ss an abbreviation for a particular lengthy formula wo shall write the letter followed by ' \rightarrow ' and then by the formula, thus

$$
I \rightarrow \lambda x[x]
$$

indicates that I is an abbreviation for $\lambda x[x]$. We shall also use the arrow in less sharply defined senses, but never so as to cause any real confusion. In these cases the meaning of the arrow may be rendered by the words 'stands for'.

If a formula \mathcal{F} is, or is represented by, a single symbol we abbreviate $\{\underline{F}\}(\underline{X})$ to $F(\underline{X})$. A formula $\{\{\underline{F}\}(\underline{X})\}(Y)$ may be abbreviated to $\{F\}(X, Y)$, or to $F(X, Y)$ if \underline{F} is, or is represented a a ingle symbol. Similarly for $\{\{\{E\}(\underline{X})\}(\underline{Y})\}(Z)$ etc. A formula $\lambda V_{1}\left[\lambda V_{2} \ldots\left[\lambda V_{r}[M]\right] \ldots\right]$ nay be abhrevieted to $\lambda \underline{V}_{1} \underline{V}_{2} \ldots \underline{V}_{r} . \underline{M}$.

Fe have not as yet assigned any meanings to our formulae, and we do not intend to do so in general. An exception may be made for the case of the positive integers which ere very conveniently represented by the formalize $\lambda f x . f(x), \lambda x \cdot f(f(x)), \ldots$ In fact we introduce the abbreviations

etc.
and also say for example that $\lambda f x \cdot f(f(x))$ (in full $\lambda f[\lambda x[\{f\}(\{f\}(x))]]$
represents the positive integer
2. Later we shall allow certain formulae to represent ordinals, but otherwise we leave them without explicit meaning; an implicit meaning may be suggested by the abbreviations used. In any case where any meaning is assigned to formulae it is desirable that the meaning be invariant under conversion. Our definitions of the positive integers do not violate this requirement, as it may proved that no two formale representing different positive integers are convertible into one another.

In connection with the positive integers we introduce the abbenation

$$
S \rightarrow \lambda u f x \cdot f(u(f, x))
$$

This formula has the property that if n represents a positive integer $S(\underline{n})$ is convertible to a formula representing its successor. ${ }^{2}$ $\overline{2}$ This follows from (A) below.

```
---------------------------------------------
```

Formulae representing undetermined positive integers will be represented by mall letters underlined, and me shall adopt once for all the convention that if a letter, W say, stands for a positive integer, then the same letter underlined, \underline{n}, stands for the formula representing the positive integer. When no confusion arises from doing so we shall omit to distinguish between an integer and the formula winch represents it.

Suppose $f(u)$ ia a function of positive integers taking positive integers as values, and that there is a w.F.F. F not containing δ such that for each positive integer $n, E(\underline{n})$ is convertible to the formula representing $f(u)$. Te shall then say
that $f(u)$ te λ-definable or formally definable, and that F formally defines $f(n)$. similar conventions are used for functions of more than one variable. The atm function is for instance formally derined by $\operatorname{\lambda ab} f x, a(f, b(f, x))$; in fact for any positive integers m, n, P for which $m+n=P$ we rive $\{\lambda a b f x . a(f, b(f, x)\}(m, n) \operatorname{conv} P$ In order to emphasize this relation we introduce the abbreviation

$$
\underline{x}+\underline{y} \rightarrow\left\{\lambda_{a} b f x \cdot a(f, b(f, x))\right\}(\underline{x}, \underline{y})
$$

and will use similar notation for sum of three or more terms,
products etc.
For any i.F.F. G wo shall say that G enumerates the sequence $\underline{G}(1), \underline{G}(2), \ldots$ and other sequence whose terms are convertible to those of this sequence.

Then a formula is convertible to another which is in normal form the second is described as normal form of the first, which is then said to have a normal form. I quote hare some of the more important theorems concerning normal forme.
(i) If a formula hes two normal form they are convertible into one another by the use of (i) alone. (Church and Rosier [1]. 479, 481).
(B) If a formula has normal form then every well-formed part of it has a normal fora. (Church and Rosier [1], 480-481).
(C) There is (demonstrably) no process whereby one can
tell of a formals whether it has a normal form. (Church [I], 360, Theorem KVIII.)

Te often need to be able to describe formulae by means of positive integers. The method used here is due to Godel (Godel [1]). To each single symbol S of the calculus we assign an interger r[s]as in the table below.

If $s_{1} s_{2} \ldots s_{k}$ is a sequence of symbols then $2^{r\left[s_{1}\right]} 3^{r\left[s_{2}\right]} \ldots P_{k}^{r\left[s_{k}\right]}$ (where P_{k} is the k th prime number) is called the Godel reprosentation (G.R.) of that sequence of symbols. No two F.F.F. have the same G.R.

Two theorems on G.R. of W.F.F. are quoted here.
(D) There is a T.F.F. form such that if a is the G.R. of a M.F.F. \underline{A} without free variables then form(\underline{a}) convf. (This follows from a similar theorem to be found in Church [Σ], 5z-66. Metals are used there in place of G.R.)
(E) There is a W.F.F. Gr such that if G is a FoF.F. -fth a normal form without free variables, then $G r(\underline{A})$ cont a. where a is the G.R. of a normal form of A . (Church [3], 53-66, as (D)).
2. Effective calculability. Abbreviation of treatment.

A function is gaid to be 'effectively calculable' if its values can be found by some purely mechanical process. Although it is fairly easy to get an intuitive grasp of this idea it is nevertheless desirable to have sone more definite, mathematically expressible definition. Such a definition was first given by Godel at Princeton in 1934 (Gödel [2], 26) following in part an unpublished suggestion of Fierbrand, and has since been developed by Kleene (Kleene [2]). We shall not be concerned much here with this particular definition. Another definition of effective calculability has been given by Churci (Church [3], 356-358) who identifies it with λ-definability. The author has recently suggested a definition corresponding more closely to the intuitive idea (Turing [1], see also Post [1]). It was said above "a function is effectively calculable if its values can be found by some purely mechanical process." We may take this statement literally, understanding a purely mechanical process one which could be carried out by a machine. It is possible to give a mathematical description, in a certain normal form, of the structares of these machines. The development of these ideas leads to the author's definition of a computable function, and an identification of computability ${ }^{3}$ with effective calculability. $\overline{3}$ Fe shall use the expression 'computatile function' to mean a function calculable by a machine, and let 'effectively calculabla? refer to the intuitive idea without particular identification with any one of these deffnitions. We do not restrict the values taken by a compatable function to be natural numbers; me may for instance have computable propositional functions.

It is not difficult thfough somewhat laborious, to prove these
three definitions equivalent (Kleene [5], Turing [2]).
In the present paper she shall make considerable use of Church's identification of effective calculability with λ_{-} definability, or, what comes to the same, of the identification with computebility and one of the equivalence theorems. In most cases where he have to deal with an effoctively calculable function we shall introduce the corresponding W.F.F. with sowe such phrese as "the function f is effectively calculable, let F be a formula λ defining it" or "let F be a formula such that $F(\underline{n})$ is convertible towhenever n represents a positive integer. In such cases there is no difficulty in seeing how machine could in principle be deslgned to calculate the values of the function concemed, and asauning this done the equivalence theorem can be apolied. A stetement as to what the formula F actually is may be onitted. Fe may introduce imediately on this besis a F.F.F. का with the property that $\delta(\underline{m}, n)$ conv r if r is the greatest positive integer for wich m^{r} divides n, If any, and is 1 if there is none. We elso introduce $D E$ with the properties

$$
\begin{aligned}
D t(\underline{n}, \underline{n}) & \text { conv } s \\
D C(\underline{n}+\underline{m}, \underline{n}) & \text { conv } 2 \\
D H(\underline{n}, \underline{n}+\underline{m}) & \text { conv } 1
\end{aligned}
$$

There is another point to bo mede clear in connection with the point of view we are adopting. It is intended that all proofs that are given should be regarded no more critically than proofa in classical analysis. The subject matter, roughly speaicing, is
constructive bystems of logic, but as this purpose is directed towards choosing a particular constructive syatem of logic for practical use; an attempt at this stage to put our theorens into constructive form would be patting tine cart before the horse.

Those computable functions which take only the values 0 and 1 ara of particular importance since they deteraine and are deternined by comrntable properties, as way be seen by replacing "0' and '11' by 'true' and 'false'. But besides this typo of property may have to consider a different type, wifoh is, roughly epearing, less constructive then the computable properties, but more so than the general predicates of classical mathematics. Suppose we have a computable function of the natural mubera taicing natural numbera as values, then correspoading to this function there is the prom perty of boing a value of the function. Such a property we shall describe as 'axionatic'; the reason for usfing this term is that it ts possible to define such a property by giving a set of axioms, the property to hold for a given argusent if and only if it is possible to deduce that it hold from the axions.

Axiomatic properties may also be chsracterized in this way. A property ψ of positive integers is oxfomatic if and only if there is a compatable property φ of two positive integers, such that $\psi(x)$ is true if and only if there is a positive integer y such that $\varphi(X, Y)$ is true. or agsin ψ is axiomatic if and only if there is a H.F.F. F such that $\psi(n)$ is true if and only if $\underline{F}(\underline{n})$ conv 2.

3. Number theoretic theorems

By a number theoretic theorem ${ }^{4}$ we shall mean a theorem of the
 I believe there is no generally accepted meaning for this term, but it should be noticed that are using it in a rather restricted sense. The most generally accepted meaning is probably this: suppose we take an arbitrary formula of the function calculus of first order and replace the function variables by primitive recursive relations. The resulting formula represents a typical number theoretic theorem in this (more general) sense.
form' $\theta(x)$ vanishes for infinitely many natural numbers x.
where $\theta(X)$ is a primitive recursive function.
5 Primitive recursive functions of natural numbers are defined laducLively as follows. Suppose $f\left(x_{1}, \ldots, x_{n-1}\right), g\left(x_{1}, \ldots, x_{n}\right), h\left(x_{1}, \ldots, x_{n+1}\right)$ are primitive recursive then $\varphi\left(x_{1}, \cdots, x_{n}\right.$ is primitive recursive if it is defined by one of the sets of equations (a) - (o).
(a) $\varphi\left(x_{1}, \ldots, x_{n}\right)=h\left(x_{1}, \ldots, x_{m-1}, g\left(x_{1}, \ldots, x_{n}\right), x_{m+1}, \ldots, x_{n-1}, x_{n}\right),(1 \leqslant m \leqslant n)$
(b) $\varphi\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n-1}\right)$
(c) $\varphi\left(X_{1}\right)=a$, where $n=1$ and a is some particular natural number.
(d)

$$
\varphi\left(x_{1}\right)=x_{1}+1 \quad(n=1)
$$

(e)

$$
\begin{aligned}
& \varphi\left(x_{1}, \ldots, x_{n-1}, 0\right)=f\left(x_{1}, \ldots, x_{n-1}\right) \\
& \varphi\left(x_{1}, \ldots, x_{n-1}, x_{n}+1\right): h\left(x_{1}, \ldots, x_{n}, \varphi\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

Tie class of primitive recursive function is more restricted than the computable functions, but has the advantage that there is a process whereby one can tell of a set of equations metier if defines a primitive recursive function in the manor described above.

If $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is primitive recursive then $\varphi\left(x_{1}, \ldots, x_{n}\right)=0$ is described as a primitive recursive relation between x_{1}, \ldots, x_{n}.
 We shall say that a problems is number theoretic if it has been shown that any solution of the problem may be put in the form of a proof of one or more number theoretic theorems. More accurately we may
say that a class of problems is number theoretic if the solution of any one of them can be transformed (by a uniform process) into the form of proofs of number theoretic theorems.

I shall now draw a few consequences from the definition of 'number theoretic theorems', and in section 5 will try to justify confining our considerations to this type of problem.

An alternative form for number theoretic theorems is for each natural number X there exists natural number y such the $\varphi(x, y)$ vanishes', where $\varphi(x, y)$ is primitive recursive and conversely. In other words, there is a rule whereby given the fundtimon $\theta(x)$ we can find a function $\varphi(x, y)$, or given $\varphi(x, y)$ we can find a function $\theta(x)$, so that $\theta(x)$ vanishes infinitely often" is a necessary and sufficient condition for for each X there is y so that $\varphi(x, y)=0$. In fact given $\theta(x)$ we define

$$
\phi(x, y)=\theta(y)+\alpha(x, y)
$$

Where $\alpha(X, Y)$ is the (primitive recursive) function with the properties

$$
\begin{aligned}
\alpha(x, y) & =1 \quad(y \leq x) \\
& =0 \quad(y>x)
\end{aligned}
$$

If on the other hand are given $\varphi(x, y)$ we define $\theta(x)$ by the equations

$$
\begin{aligned}
& \theta_{1}(0)=3 \\
& \theta_{1}(x+1)=3 . \frac{2}{3}\left(\theta_{1}(x)\right)^{\sigma}\left(\varphi\left(\theta_{3}\left(\theta_{1}(x)\right)-1, \theta_{3}\left(\theta_{1}(x)\right)\right)\right. \\
& \theta(x)=\varphi\left(\theta_{3}\left(\theta_{1}(x)\right)-1, \theta_{2}\left(\theta_{1}(x)\right)\right)
\end{aligned}
$$

where $\theta_{p}(x)$ is to be defined so as to mean the largest s for
which r^{s} divides X ' and $\frac{2}{3} \times$ to be defined primitive recursive so as to have its usual meaning if X is a multiple of 3 . The function $\sigma(x)$ is to be defined by the equations $\sigma(0)=0, \sigma(x+1)=1$. It is easily verified that the functions so defined have the desired properties.

Fe shall now show that questions as to the truth of statements of form 'does $f(x)$ vanish identically', where $f(x)$ is a computable function, can be reduced to questions as to the truth of number theoretic theorems. It is understood that in each case the rule for the calculation of $f(x)$ is given and that one is satisfied that this rule ia valid, ie, that the machine which should calculate $f(x)$ is circle re (Turing [1], Rs). The function $f(x)$ being computable is general recursive in the Herbrand-Gödel sense, and therefore by a general theorem due to Rene ${ }^{6}$ is expressible in the form
$\overline{6}$ -
Kleene [5], 727. This result is really superfluous for our purpose, as the proof that every computable function is general recursive proceeds by showing that these functions are of form (3.2). (Turing [2], 161).

where $\in y[\mathcal{C l}(y)]$ means the least y for which $O(y)$ is true' and $\psi(y)$ sid $\varphi(x, y)$ are primitive recursive functions. Then if we define $\rho(x)$ by the equations (3.1) and

$$
e(x)=\varphi\left(\theta_{3}\left(\theta_{1}(x)\right)-1, \theta_{2}\left(\theta_{1}(x)\right)+\psi\left(\theta_{2}\left(\theta_{1}(x)\right)\right)\right.
$$

It will be seen that $f(x)$ vanishes identically if and only if $\rho(x)$ vanishes for infinitely many values of X.

The converse of this result is not quite true. Fe camot say
that the question as to the truth of any number theoretic theoren is reducible to a question as to whether a corresponding computable function vanishes identically; we should have rather to asy that it is reducible to the problem as to whether a certain machine is circle free and calculates an identically vanishing function. But more is truez every number theoretic theorem is equivelent to the statement that a corresponding machine is circle free. The behavior of the machine may be descitbed roughly as follows: the machine is one for the calculation of the primitive recursive function $\theta(x)$ of the number theoretic problem, except that the results of the calculation are first arranged in a forn in which the figures 0 and 1 do not occur, and the machine is then modified so that whenover it has been found that the function vanishes for some value of the argument, then O is printed. The machine is circle free if and only if an infinity of these figures are printed, l.e. if and only if $\theta(X)$ venishes for infinitely many values of the argument. That, on the other hand, questions es to circle freedon may be reduced to questions of the truth of number theoretic tineorems follows from the fact that $\theta(x)$ is primitive recursive when it is defined to heve the value 0 if a certain machine M / b prints 0 or 1 in 1 is $(x+1)$ th complete configuration, and to have the value 1 otherFise.

The conversion calculus provides another normal form for the number theoretic theorems, and the one we shall find the nost convenient to use. Every number theoretic theorem is equivalent
to a statement of the form $1 \underline{B}(\underline{u})$ is convertible to 2 for every W.F.F. $\frac{W}{\text { representine a positive integer', }}$ 日 being a F.F.F. determined by the theorem; the property of A bere asserted will be desm cribed briefly as'A is dual'. Conversely such statements are reducible to number theoretic theorems. The first half of thes assertion follows from our rasults for complatable functions, or directly in this way. Since $\theta(x-1)+2$ is primitive recursive it is formally definable, by means of a fomala G let us say. Now there is (Xleene [1], 232) a W.F.F. $\mathcal{F}_{\text {with the properti that if } T(v)}^{T}$ is convertinile to a formule representing s positive integer for each positive integer r, then $\delta(I, \underline{n})$ is convertible to \underline{S} where s is the k th positive integer t (if there is one) for which I(\underline{t}) cont 2; if $I(\underline{t})$ conv 2 for less than w values of t then $\wp(I, n)$ has no normal form. The formule $G(\phi(G, n))$ will therefore be convertible to 2 if and only if $\theta(x)$ vanishes for at least h values of X, and will be convertible to 2 for every positive integer x if and only if $\theta(x)$ vanishes infinitely often. To prove the second half of the assertion ne take Godel representations for the formale of the conversion calculus. Let $c(x)$ be 0 if x is the G. R. of 2 (1.e. If x is $2^{3} \cdot 3^{10} \cdot 5 \cdot 7^{3} \cdot 11^{28}$. $\left.13 \cdot 17 \cdot 19^{* 0} \cdot 23^{2} \cdot 29 \cdot 31 \cdot 37^{28} \cdot 41^{2} \cdot 43 \cdot 47^{28} \cdot 53^{2} \cdot 59^{2} \cdot 61^{2} \cdot 67^{2}\right)$ and otherrise be 1. Take en onumeration of the G. R. of the formulae into which $\underline{A}(\underline{m})$ is convertibles let $a(m, u)$ be the nth number in the enumeration. We can arrange the enumaration so that $a(m, u)$ is primitive recursive. Nor the statement that $\underline{H}(\underline{m})$
is convertible to 2 for every positive integer w is equivalent to the statement that for each positive integer outhere is a positive integer w such that $c(a(m, u))=0$, and this is number theoretic.

It is easy to show that a number of unsolved problems such as the problem as to the truth of Fermat's last theorem are number theoretic. There are, however, also problems of analysis which are number theoretic. The Riemann hypothesis gives us an example of this. We denote by $J(s)$ the function defined for $\chi s=\sigma>1$ by the series $\sum_{n=1}^{\infty} \frac{1}{4^{s}}$ and over the rest of the complex plane with the exception of the point $S=I$ by analytic continuation. The Riemann hypothesis asserts that this function does not vanish in the domain $\sigma>\frac{1}{2}$. It is easily shown that this is equivalent to saying that it coos not vanish for $2>\sigma>\frac{1}{2}, R_{s}=f \geqslant 2$ ie. that it does not vanish inside any rectangle $2>\sigma>\frac{1}{2}+\frac{1}{1}, T>t>2$ where T is an integer greater than 2. Now the function satisfies the inequalities

$$
\left.\begin{array}{l}
\text { inequalities } \\
\left|\Psi(s)-\sum_{1}^{n} n^{-s}-\frac{N^{1-s}}{s-1}\right|<2 t(N-2)^{-\frac{1}{2}} \\
\left|\zeta(s)-J\left(s^{\prime}\right)\right|<\left|s-s^{\prime}\right| .60 t
\end{array}\right\} \begin{aligned}
& 2<\sigma<\frac{1}{2}, t \geqslant 2 \\
& 2<\sigma^{\prime}<\frac{1}{2}, t^{\prime} \geqslant 2
\end{aligned}
$$

and we can define a primitive recursive function $\xi\left(l, \ell^{\prime}, m, m, N, M\right)$
such that

$$
\left|\xi\left(\ell, \ell^{\prime}, m, m^{\prime}, N, M\right)-M\right| \sum_{i}^{N} n^{-s}+\frac{N^{1-s}}{s-1}| |<2 \quad\left(s=\frac{l}{e^{\prime}}+c \frac{m}{m^{\prime}}\right)
$$

and therefore if we put

$$
\xi\left(l, M, m, M, M^{2}+2, M\right)=X(l, m, M)
$$

we shall have

$$
\begin{aligned}
& \left|\zeta\left(\frac{l+\vartheta}{M}+c \frac{m+\vartheta^{\prime}}{M}\right)\right| \geqslant \frac{x(l, m, M)-122 T}{M} \\
& \frac{1}{2}+\frac{1}{T} \leqslant \frac{l-1}{M}<\frac{l+1}{M}<2-\frac{1}{M}, 2<\frac{m-1}{M}<\frac{m+1}{M}<T,-1<\vartheta<1,-1<\eta<1
\end{aligned}
$$

If we define $B(M, T)$ to be the smallest value of $\quad X(l, m, M)$
for which $\frac{1}{2}+\frac{1}{1}+\frac{1}{M} \leq \frac{l}{M}<2-\frac{1}{M}, 2+\frac{1}{M}<\frac{m}{M}<T-\frac{1}{M}$,
then the Riemann hypothesis is true if for each T there is M
satisfying $B(M, T)>122 T$. If on the other hand there is
T such that for all $M, B(M, T) \leqslant 122 T$, the Riemann
hypothesis is false; for let $\ell_{M}{ }^{m} M$ be such that
$X\left(l_{M}, m_{M}, M\right) \leq 122 T_{\text {then }}\left|J\left(\frac{l_{M}+2 m_{M}}{M}\right)\right| \leq \frac{244 T}{M}$
Now if a is a condensation point of the sequence $\frac{e_{M}+c m_{M}}{M}$ then since $f(s)$ is continuous except at $S=1$ we must have $J(a)=0$
implying the falsity of the Riemann hypothesis. Thus we have
reduced the problem to the question as to whether for each T
there is M for which $B(M, T)>122 T \ldots B(M, T)$
is primitive recursive, and the problem is therefore number theoretic.
4. A tres of probler which is not number theoretic. ${ }^{7}$
${ }^{7}$ Compare Rosser [1].
Let us suppose that we are supplied with some unspecified
means of solving number theoretic problems; a tind of oracle as it were. We will not go any further into the noture of this oracle than to say that it camnot be a machine. With the help of the oracle we could form a new kind of machine (call then onachines), having as one of its fundamental processes that of solving a given number theoretic problem. More definitely these nachines are to behave in this way. The moves of the machine are determined as usual by table except in the case of moves frome certain internal conflguretion V. If the machine is in the internel configuration θ and if the sequence of aynbols marised with l is then the

Fithout real loss of eenerality we may suppose that 旦 is almays mell formed.
conflguration or \mathscr{y} according as it is or is not truse that $-\vec{A}$ is dual. The decision as to which is the case is referred to the oracle.

These machines may be described by tables of the same kind as used for the description of a-machines, there being no entries, howerer, for the internal conifguration O. Te obtain description nuwers from these tables in the same way as before. If we make the convention that in assigning numbers to internal configurations $\theta \cdot g$, f are alwas to be q_{2}, q_{3}, q_{4}, then the description numbers determine the behaviour of the machines mictuely.

Given any one of these machtnes we mey ask ourselves the quesHon wiether or not it prints an infinity of figures 0 or $1 ;$ I assert that this class of problews is not number theoretic. In View of the definition of "number theoretic problem" this means to say that it is not possible to construct an o-rachine which when supplied ${ }^{9}$ with the description of any other o-machine will determine
 Compare Turing [1], ¿ 6,7.
 whether that machine is o-circle free. The argument may be taisen over directly from Turing [1], p. 8. Te say that a number is o-catisfactory if it is the description number of an o-circle free machine. Then if there is an o-machine which will determine of any integer whether it is o-satisfactory then there is also an omachine to calculate the values of the function $1-\varphi_{n}(n)$. Let $r(n)$ be the wh o-satisfactory number and let $\varphi_{n}(m)$ be the m th figure printed by the omachine rhose description number is W. This o-machine is circle free and there is therefore an o-batisfactory number K sucl: thet $\varphi_{K}(n)=I-\varphi_{n}(n)$ all w. Puting $n=K_{1}$ Yields a contradiction. This completes the proof that problens of circle freedon of omachines are not number theoretic.

Propositions of the form that an omachine is o-circle frea can always be put in the form of propositions obtained from formulae of the functional calculus of first order by replacine sone of the functional variables sy primitive recursive reletions. Compme footnote ${ }^{6}$.

5. Syntactical theorems as number theoretic theorems.

I shall mention a property of number theoretic theorems which suggests that there is reeson for regarding them as of particular Inportance.

Suppose that have soce axiomatic system of a purely formal nature. He do not interest ourselves at all in interpretations for the formalae of this system. They are to be regarded as of interest for themgelves. An example of what is in mind is afforded by the conversion calculus ($\mathcal{q} 1$). Every sequence of symbols' \underline{A} conv \underline{B}^{\prime} where A and B are well formed formulae, is a formula of the
 B. The rules of conversion give us the ruies of procedure in this axiomatic system.

Now consider a new rule of procedure mich is reputed to yield only formala provable in the original sense. Fe may ask ourgelves whether such a rule is valid. The statement that such a rule is palid would be number theoretic. To prove this let us take Godel representations for the formulae, and an enumeration of the provable formalae; let $\varphi(r)$ be the G. R. of the r th formula in the enumeration. We nay sappose $\varphi(r)$ is prinitive recursive if we do not mind repetitions in the emmeration. Let $\psi(r)$ be the G. R. of the r th formala obtained by the new rule, then the statement that this nev rule is valid is equivalent to the essertion of

$$
(r)(\exists s)[\psi(r)=\varphi(s)]
$$

(the domein of individuals being the natural numbers). It has
been show in \mathcal{Z} that such statewents are number theoretic.
It might plansibly be argued that all theorems of nathematics which have any aignificance when taken alone, are in offect syntactical theorems of this kind, stating the relidity of certain derived rules' of procedure. Wthout going so far as this I should say that theorens of this zind have an importance which wakes it morth while to give them apecial consideration.

6. Logic formulate

We shail call a formula L a logtc formula (of, if it is clear that are spealing of a F.F.F., simply a logic) if it has the property that if A is formala such thet $L(\underline{A})$ conv 2 then $-A$ is dual.
A logic formala gives us a means of satiafying ourselves of the truth of number theoretic theorems. For to each number theoretic proposition there corresponds a W.F.F. \underline{A} which is tual if and oniy if the proposition is true. Now if L is a logic and $L(E)$ conv 2 then A is dual and we knov that the corresponding number theoretic proposition is true. It doss not follow that if L is a logic w can use L to satisty ourselves of the truth of any true number theoretic theorem.

If L is logic the set of formulae \underline{A} for which $L(\underline{A})$ conv 2 will be called the extent of L.

It may be proved by the use of (D), (E) p 7 , that there is a formula X such that if M hes a normal form and no free variables and is not convertible to 2 , then $X(M)$ conv 1 , but if M conv 2 then $X(M)$ conv 2. If \underline{L} is a logic then $\lambda x, X(L(X))$ is also a logic, whose extent is the same as that of L, and has the property that if \underline{A} has no free variables then $\{\lambda x . X(L(X))\}(A)$ is almays convertible to 2 or to 2 or else has no nomal form. A lagic with this property will be sald to standardized.

Fe shall say that a logic L^{\prime} is at least as complete as a logic L if the extent of L is a subset of the extent of L^{\prime}. The logic L^{\prime} will be more complete than L if the extent of \underline{L} is a
proper subset of the extent of L^{\prime}.
Suppose that wave an effective set of rules by which we can prove formulae to be dual; 1.e. we have a ayaten of aymolic logic in which the propositions proved are of the form that certain formuLae are dual. Then we can find a logic formula wose oxtent consists of just those formulae which can be proved to be dual by the ries; that is to say that there is aule for obtaining the logic formula from the system of symbolic lagic. In fact the system of sysbolic logic enebles us to obtain ${ }^{10}$ a computable function of posiI2 Compare Turing $[1], 252$, second footnote, $[2], 156$. tive intogers whose values run through the Godel representationg of the formulae provable by means of the given rules. By the theorem of equivalence of computable and λ-definable functions there is a fornule J such thet $J(1), J(2), \ldots$ are the G. R. of these formuLae, Now lat

$$
w \rightarrow \lambda_{j v} \operatorname{D} \beta(\lambda u . S(j(u), v), 1, I, 2)
$$

then I assert that $W(J)$ is a logic with the required properties. The properties of β imply that $\oint(\underline{C}, 1)$ is convertible to the least positive integer n for which $C(\underline{n})$ conv 2 and has no normal forci if there is no such integer. Consequently $\gamma(C, I, I, 2)$ 1s convertible to 2 if $S(\underline{n})$ conv 2 for somesitive integer w, and has no normal form otherwise. That is to say that $W(\underline{\mathcal{J}}, \underline{A})$ conv 2 if and conly if $\delta(\underline{J}(\underline{u}), A)$ conv 2, some w, i.e. If $J(\underline{U})$ conv A some r.

There is conversely a formula W^{\prime} such that if L is a logic
then $W^{\prime}(\leqslant)$ enumerates the extent of \underline{L}. For there is a formula Q such that $\varphi(L, \underline{\theta}, 4)$ conv 2 if and only if $L(\underline{\theta})$ is convertible to 2 in less than n steps. We then put
$W^{\prime} \rightarrow \lambda \ell w \cdot \operatorname{form}(\pi(2, \delta(\lambda x . Q(l, \operatorname{form}(\theta(2, x)), \theta(3, x)), n)))$ of course $W^{\prime}(W(\underline{J}))$ rill normally be entirely different from $-J$ and $W\left(W^{\prime}(\leq)\right)_{\text {from }} \leq$.

In the case where have symbolic logic whose propasitions can be interpreted as number theoretic theorems, but are not expressed in the form of the duality of formulae shall again have a corresponding logic formula, but its relation to the symbolic logic will not be so simple. As an example let us take the case that the symbolic logic proves that certain prinitive recureive functions Fanish infinitely often. As was shown $\}$ we can assoctate with each such proposition a F.F.F. which is dual if and only if the proposition is true. When re replace the propositions of the symbolic logic by theorems on the duality of formulae in this way our previous argument applies, and we obtain a certain logic formula L. However, \leq does not determine uniquely which are the propositions provable in the symbalic logic; for it is possible that $\theta_{1}(x)$ vanishes infinitely often' and ' $\theta_{2}(x)$ vanishes infinitely often' are both associated with A is dual, and that the first of these propositions is provable in the system, but the second not. However, if we suppose that the system of symbolic logic is sufficiently powerful to be able to carry out the argament on p. 15 then this difficulty cannot arise. There is also the possibility that
there may bermiae in tho extent of L with no propositions of the fors ' $\theta(x)$ vanishes infinitely often' corresponding to them. But to each such formula we can asaign (by a different argument) a proposition P of the symbolic logic which is the necessary and sufficient condition for A to be dual. With P is associated (In the ifst way) a formula \underline{A}^{\prime}. Now L can always be modified so that its extent contains \underline{A}^{\prime} whenever it conteins \underline{A}.

Fe shall be interested principally in questions of coapleteness. Let us suppose that wave a chass of aystess of symbolic logic the propositions of these systems belne expressed in unifors notation and interpretable as number theoretic theorems suppose also there Is rule by which we can asaign to each proposition p of the notation a.F.F. $-p$ which is duel if and only is P is tme, and that to each F.F.F. \underline{A} we can asign a proposition P_{A} which is the necessary and surifcient condition for \underline{A} to be dual. $\mathcal{P}_{\underline{B}}$ is to be expected to differ from P. To each symbolic logic C wear assign two logic formulae \underline{L}_{C} and $\leq_{C} /$. A formule A belongs to the extent of L_{C} if ${\underset{\sim}{A}}$ is provable in C, while the extent of L_{C} consists of all A_{p} where p is provable in C. Let us say that the class of symbolic logics is complete it each true propozition Is provable in one of thers let us also 6 ay that a class of logic formula is complete if the set theoretic sum of the extents of these logics incluces all dual formulae. I ascert that a necessary conaition for a class of symbolic logios C to be complete is that the class of logics L_{C} be complete, mille a sufficient condition
is that the class of logics L_{C}^{\prime} be complete. Let us suppose that the class of symbolic logics ia complete; consider $P_{\underline{A}}$ where \underline{A} is arbitrary but dual. It must be provable in one of the systems, C wy. - therefore belongs to the extent of \leq_{C}, 16. the class of logins $L_{C}{ }^{1 s}$ complete. How suppose tine class of 10 zines $L_{C}^{\prime}{ }^{\prime}{ }^{13}$ complete. Let P be an arbitrary true proposition of the notation; \underline{A}_{P} must belong to the extent of some ${L_{C}^{\prime}}_{C}^{\prime}$, and this means that P Es provable in C.

We shall say that a single logic formula \leqslant is complete if its extent includes all dual formulae; the is to say that it is duel complete if it enables us to prove every time number there tic theorem. It is a consequence of the theorem of Godel (if suitably extended) that no logic formula ia complete, and this also follows from (C) p. 6, or frow the results of Turing [1] $\mathcal{Q} 8$, when taken in conjunction With $\ell 3$ of the present paper. The idea of completeness of a logic formula will not therefore be very important, although it is useful to into a term for it.

Suppose Y is a w. F.F. such that $Y(\underline{y})$ is a logic for each positive integer \underline{n}. The formulae of the extent of $\underline{Y}(\underline{u})$ are enumerated by $W(Y(\underline{n}))$, and the combined extents of these logics by λr. $W(\underline{Y}(\theta(2, r)), \theta(3, r))$. Putting

$$
T \rightarrow \lambda_{y} . W^{\prime}(\lambda r . W(y(\theta(2, r)), \theta(3, r)))
$$

$T(Y)$ is a logic whose extent is the combined extent of $Y(1)$, $y(2), y(3), \cdots$

To each W.F.F. \leq we can assign a W.F.F. $V(L)$ such that the
necessary ans sufficient condition for L to be a logic formula is that $V(L)$ be dual. Let $N m$ be a F.F.F. which enumerates all formulae with normal forms. Then the condition that $L \underline{\text { be a logic }}$ is that $\leq(N m(r), s)$ conv 2 for all positive integers r, s, 1.e. that $\lambda a \cdot L(\operatorname{Nm}(G(2, a)), \mathscr{O}(3, a))$ be dual. Fo mag y therefore put

$$
V \rightarrow \lambda l a \cdot l(\operatorname{Nm}(\nabla(2, a)), \ddot{\nabla}(3, a))
$$

7. Ordinale.

Fe begin our treatment of ordinals with sone brief definitions from the Cantor theory of ordinals, but for the understanding of $80 m$ of the proofs a greater amout of the Centor theory is necessary than is here sot out.

Suppose we have e class determined by the propositional function $D(x)$ and relation $G(x, y)$ ordering thers, 1.e. satisfying

$$
\begin{align*}
& G(x, y) \nleftarrow G(y, z) \supset G(x, z) \\
& D(x) \nsim D(y) \supset G(x, y) \vee G(y, x) \vee x=y \tag{7.1}\\
& G(x, y) \supset D(x) \nsim D(y) \\
& \sim G(x, x)
\end{align*}
$$

$$
\left.\begin{array}{c}
i \\
i i \\
i i \\
i v
\end{array}\right\}
$$

Ths class defined by $D(x)$ is then called a gerief with the ordering relation $G(x, y)$. The series is said to be well ordered and the ordering relation is called an prdinal if every sub-Beries which is not vold has a first term, i.e. if

$$
\begin{align*}
\left(D^{\prime}\right) & \left\{(\exists x)\left(D^{\prime}(x)\right) \&(x)\left(D^{\prime}(x) \supset D(x)\right) \supset\right. \\
& \left.\supset(\exists z)(y)\left[D^{\prime}(z) \&\left(D^{\prime}(x) \supset G(z, y) \vee z=y\right)\right]\right\} \tag{7.2}
\end{align*}
$$

The condition (7.2) is equivalent to anothar, more suitable for our purposes, namely the condition that every descending subsequence mast terminate; formaliy

$$
(x)\left\{D^{\prime}(x) \supset D(x)+(\exists y)\left(D^{\prime}(y)+G(y, x)\right)\right\} \sqsupset(x)\left(\sim D^{\prime}(x)\right)
$$

The ordering relation $G(x, y)$ is seld to be similar to $G^{\prime}(x, y)$
If there is one-one correspondence between the series transforming the ane relation into the other. Inis is best expressed formally

$$
\begin{aligned}
& (\exists)\left[(x)\left\{D(x) \supset\left(\exists x^{\prime}\right) M\left(x, x^{\prime}\right)\right\} \nsim\left(x^{\prime}\right)\left\{D^{\prime}\left(x^{\prime}\right) \supset(\exists x) M\left(x, x^{\prime}\right)\right\}\right. \\
& *\left\{\left(M\left(x, x^{\prime}\right) \nleftarrow M\left(x, x^{\prime \prime}\right)\right) \vee\left(M\left(x^{\prime}, x\right) \notin M\left(x^{\prime \prime}, x\right)\right\} \supset x^{\prime}=x^{\prime \prime}\right\}_{(7.4)} \\
& \left.\leftarrow\left\{M\left(x, x^{\prime}\right) \nleftarrow M\left(y, y^{\prime}\right) \supset\left(G(x, y) \equiv G^{\prime}\left(x^{\prime}, y^{\prime}\right)\right)\right\}\right]
\end{aligned}
$$

Ordering relations are regarded as belonging to the sade ordinal if and only if they are similar.

We wish to give names to all the ordinals, but this will not be possible until they have been restricted in some way; the class of ordinals at present defined is more than enumerable. The resfrictions we actually put are these: $D(x)$ is to imply that x is a positive integer; $D(x)$ and $G(x, y)$ are to be computable properties. Both of the propositional functions $D(x), G(x, y)$ can then be described by means of a single F.F.F. \underline{O} with the properties.
$\underline{Q}(m, n)$ cont 4 unless both $D(m)$ and $D(n)$ are true,
Q (m, m) cons 3 if $D(m)$ is true,
$\underline{\varrho}(m, n)$ cont 2 if $D(m), D(n), G(m, n), \sim(m=n)$ are true,
Q (m, n) cont 1 if $D(m), D(n), \sim G(m, n), \sim(m=n)$, are time, owing to the conditions to which $D(x), G(x, y)$ are subjected \underline{O} must further satisfy
(a) if $\underline{\underline{Q}}(\underline{m}, \underline{n})$ is convertible to 1 or 2 then $\underline{Q}(m, m)$ and 으 $(\underline{n}, \underline{n})$ are convertible to 3 .
 is convertible to 1,2 , or 3 ,
(c) if $\underline{O}(\underline{m}, \underline{n})$ is convertible to 1 then $\underline{O}(\underline{n}, \underline{m})$ is convertible to 2 and conversely,
(d) if $\underline{Q}(\underline{m}, \underline{n})$ and $\underline{Q}(\underline{n}, \underline{p})$ are convertible to 1 then $Q(\underline{m}, \underline{p})$

is also;

(a) there is no sequence m_{1}, m_{2}, \ldots such that $\underline{\underline{n}}\left(m_{i+1}, m_{i}\right)$ conv 2 for each positive integer i,
(f) $\underline{Q}(m, n)$ is always convertible to $2,2,3$, or 4 . If a forsula ㅇ satisfies these conditions then there are corresponding propositional functiona $\mathcal{D}(x), G(x, y)$. we shall therefore say that Ω is an ordinal formula if it aatisfies the conditions (a) - (f). It will be seen that a consequence of this definition is that $D t$ is an ordinal formula. It represente the ordinal ω. The definition have given does not pretend to have virtues such as elegance or convenience. It has been introduced rather to fix cur ideas and to show how it is possible in principle to describe ordinals by means of well formed formulee. The definitions could be modified in a number of ways. Some such modifications are quite trivial; they are typified by modifications such as changing the numbers $1,2,8,4$, used in the definition to sone others. Fiwo such definitions fill be said to be equivalent; in general we shail say that two definitions are equivalent if there are F.F.F. I, I^{\prime} such that if \underline{A} is an ordinal formula under one definition and represents the ordinal α, then $I^{\prime}(A)$ is an ordinal formula under the second definition and represents the same ordinal, and conversely if \underline{A}^{\prime} is an ordinal formula under the second definition representing α, then $I\left(\underline{A}^{\prime}\right)$ representa α under the first definition. Beaides definitions equivalent in this sense to our original definition there are number of other possibilities open.

Suppose for instance that do not require $D(x)$ and $G(x, y)$ to be computable, but only that $D(x)$ and $G(x, y) \leftarrow x<y$ be axiomatic. ${ }^{13}$ This leads to a definition of ordinal formula which
$\overline{1} x^{-}$To require $G(x, y)$ to be axiomatic would anount to requiring $G(x, y)$ computable on account of (7.1) ii.
is (presumably) not equivalent to the definition we ar using. $14-$ is on the other hand if $D(x)$ be axiomatic and $G(x, y)$ computable in the nodiried sense that there is a rule for determining she ther $G(x, y)$ is true which leads to a definite result in all cases where $D(x)$ and $D(y)$ are true, the corresponding definition of ordinal formule is equivelent to our effnition. To elve the proof mould be too much of a digression. Probably a number of other equivalences of this kind hold.

There are numerous possibilities, and little to ruide us as to winch definition should be chosen. No one of them could well described as 'wrong'; some of them may be found more valuable in applications than others, and the particuiar choice have made has been partly deteralned by the apolications we have in viaw. In the case of theorems of a negative character one would wish to prove thea for each one of the possible definitions of ardfnal formula'. This progran could I think be carried through for the negative resulta of $\delta \%, 10$.

Before leaving the subject of possible wars of defintar ordinal
formalae I must mention another definition due to Church and Kleene (Church and Kleene [1]). Fe can make use of this definition in constructing ordinal lagics, but it is more conventent to use a slightiy diferent definition whici is equivalent (in tie sense described on p. 29) to the Church-Kleene definftion as nodified in Church [4].

Introduce the abbreviations

$$
\begin{aligned}
& U \rightarrow \lambda u f x \cdot u(\lambda y \cdot f(y(I, x))) \\
& \text { Sue } \rightarrow \lambda \operatorname{auf} x \cdot f(a(u, f, x))
\end{aligned}
$$

We define first a partial ordering relation ' $<$ ' winch holds between certain pairs of F.F.F. (conditions (1) - (5)).
(1) If $\underline{A} \operatorname{con} \underline{B}$ then $\underline{A}<\underline{C}$ implies $\underline{B}<\underline{C}$ and $\underline{C} \underline{A}$ implies $C<\underline{B}$.
(2) $\underline{A}<\operatorname{Suc}$ (可)
(s) For any positive integers $m, n, \lambda u f x . \underline{R}(\underline{n})<\lambda u f x . \underline{R}(m)$ Laplies λ of $x . \underline{R}(\underline{n})<\lambda u f x \cdot u(\underline{R})$.
(4) If $\underline{A}<\underline{B}$ and $\underline{B}<\underline{C}$ then $\underline{F}<\underline{C}$. (1) - (4) are required for any F.F.I. $\boldsymbol{A}, \underline{B}, C, \lambda u f x, \underline{P}$.
(5) The relation $\underline{A}<\underline{B}$ holds only when compelled to do so br (1) - (4).

We define C-X ordinal formulae by the conditions (6) - (10).
(6) If \underline{A} cont \underline{B} and A is a $C-K$ ordinal formula then B is a C-K ordinal formula.
(7) U is a cK ordinal formula.
(8) If A is a $C-\mathbb{K}$ ordinal formula then $\operatorname{Suc}(\underline{A})$ is a $C-\mathbb{K}$ ordinal formula.
(9) If $\lambda u f x . \underline{R}(\underline{u})$ is a cox ordinal formula and $\lambda u f x . \underline{R}(\underline{k})<$ $<\lambda u f x . \underline{R}(S(\underline{u}))$ for each positive integer n then $\lambda u f x, u(\underline{R})$ is a C-K ordinal formula.
(10) A formula is a C-IK ordinal formula only if compelled to be bo by (6) - (9).

The representation of ordinals by formula is described by (il) (15).
(11) If \underline{A} con \underline{B} and \underline{A} represents α then \underline{B} represents α.
(is) U represents 1.
(15) If \underline{A} represents α then $\operatorname{Suc}(\underline{A})$ represents $\alpha+1$.
(14) If $\lambda_{u} f x . \underline{R}(\underline{u})$ represents α_{n} for each positive integer n then $\lambda u f x . u(R)$, represents the upper bound of the sequence $\alpha_{1}, \alpha_{2}, \alpha_{3} \ldots$.
(15) formula represents an ordinal only when compelled to do so by (11) - (14).

We denote any ordinal represented by \boldsymbol{A} by 三 without prejudice $^{\text {m }}$ to the possibility that more than one ordinal may be represented by \# . We shall write $1 \leqslant \underline{B}$ to mean $\underline{A}<\underline{B}$ or \underline{A} conv B.

In proving properties of C-I ordinal formulae we shall of ten use a kind of analogue of the principle of transfinite induction. If φ is sone property and we have
(a) If \underline{A} conv \underline{B} and $\varphi(\underline{A})$ then $\varphi(\underline{B})$.
(b) $\varphi(U)$.
(c) If $\varphi(\underline{\theta})$ then $\varphi(\operatorname{suc}(\underline{\theta}))$.
(d) If $\varphi(\lambda u f x, \underline{R}(\underline{n}))$ and $\lambda u f x \cdot \underline{R}(\underline{a})<\lambda u_{f} x, \underline{R}(S(\underline{u}))$ for each
positive integer n then $\varphi(\lambda u f x, u(R))$
then φ (A) for each C-K ordinal formula A. To prove the validity of this principle we have only to observe that the class of formulae A satisfying $\varphi\left(\right.$ I $\left.^{\prime}\right)$ is one of those of which the class of C-K
ordinal formulae was defined to be the smallest. Fe can use this principle to help we prove:-
(1) Every C-K ordinal formula is convertible to the form
duff. B where B is in normal form.
(ii) There is a hod by which one can determine of any C-K ordinal formula into which of the forms U, $\operatorname{Suc}(\lambda u f x . B), \lambda u f x . u(R)$, where u is free in R, it is convertible, and to determine B, R. In each case B, R are unique apart from conversions.
(iii) If \underline{A} represents any ordinal \bar{A} is unique. If \underline{E}_{A},
$=B_{B}$ exist and $\underline{A}<\underline{B}$ then $\frac{A}{\underline{\theta}}<\underline{E}_{B}$.
(iv) If $\underline{A}, \underline{B}, \underline{a}$ c- \mathbb{C} ordinal formulae and $B<\underline{\theta}$, $\underline{C}<\underline{A}$ then either $<\underline{B}, \underline{B}<\underline{C}$ or \underline{B} cons \underline{C}.
(v) A formula \underline{A} is a $C-\mathbb{R}$ ordinal formula if
(a) $U \leqslant I$
(B) If $\lambda u f x, u(\underline{R}) \leqslant \underline{f}$ and n is a positive interger, then $\lambda u f x \cdot \underline{R}(\underline{n})<\lambda$ up $x . \underline{R}(S(\underline{n}))$.
(c) For any two r.F.F. $\underline{B}, \underline{C}$ with $\underline{B}<\underline{A}, \underline{C} \underline{A}$ have $B<C, C<\underline{B}$ or \underline{B} con C, but never $\underline{B}<\underline{B}$.
(D) There is no infinite sequence $\underline{B}_{1}, \underline{B}_{2}, \ldots$ for mich ${\underset{\sim}{r}}_{r}<\underline{B}_{r-1}<\underline{A}$ each r.
(vi) There is a formula H such that if A is a C-K ordinal formula then $H(\underline{\theta})$ is en ordinal formula representing the same ordinal. $H(\underline{A})$ is not an ordinal formula unless \underline{A} is a C-I ordinal formula.

Proof of (1). Take $\varphi(\underline{\theta})$ to be A is convertible to the form
$\lambda_{4} f x$ B were \underline{B} is in normal forme. The conditions (a), (b) are trivicil. For (c) suppose A cony $\lambda u / x . B$ where B is in noma forms, then $S u e(\underline{A})$ cony $\lambda u f x . f(\underline{B})$ and $f(\underline{B})$ is in normal form. For (a) have only to show tint $u(R)$ has a normal form, E.0. that R has a normal form, which is true since $\underline{R}(I)$ has a normal form.

Proa of (ii). Since by hypothesis the formula is a Coir ordinal formula we have only to perform conversions on tit until it is in one of the forms described. It is not possible to convert it into two of these three forms. For suppose duff. $f(\underline{\theta}(u, f, x))$ cony $\lambda u f x$. u (R) and is a C-K ordinal formula; it is therefore convertible to the rom dufy. \underline{B} where \underline{B} is in normal fora. But the norasal form of $\lambda u f x, u(\mathbb{R})$ can be obtained by conversions or R, and that of $\lambda u f x, f(\underline{A}(u, f, x))$ by conversions on $\underline{A}(u, f, x)$ (as follows from Chmoch and Rosier [1] theorem 2) but this would imply that the formula in question had two normand forms, one of form duff $x, u(S)$ and one of form $\lambda u f x . f(C)$, which is impossible. or suppose U cont $\lambda u f x, u(\underline{R})$ were R is a moll formed formica with u as a free variable. We may suppose R is in normal Corm. Now U is $\lambda u f x \cdot 4\left(\lambda y \cdot f\left(y\left(\frac{T}{y} x\right)\right)\right.$)By (A) p. 6. R is identical with $\lambda y \cdot f(y(I, x))$ which does not have u as a free variable. It now only remains to show that if $\operatorname{Suc}\left(\lambda_{u f} f x . \underline{B}\right)$ cons $S_{u c}\left(\lambda u f x \cdot \underline{B}^{\prime}\right)$ and $\lambda_{u} f x, u(\underline{R})$ cons $\lambda u f x . u(\underline{R})$ then $B \operatorname{conv} \mathcal{B}^{\prime}$ and R won \mathbb{R}^{\prime}.

If $\operatorname{Suc}(\lambda u f x, B)$ cons $\operatorname{Suc}\left(\lambda u f x . B^{\prime}\right)$ then dupe . $f(\underline{B})$ con $\lambda u f x . f\left(B^{\prime}\right)$
but both of these formulae can be brought to normal fora by convexsons on \underline{B}, \underline{B}^{\prime} and therefore B cont B^{\prime}. The same argument applies in the case that $\lambda_{4} f x . u(\underline{R})$ cont $\lambda_{\text {af f }} u\left(\mathbb{R}^{\prime}\right)$.

Proof of (iIi): To prove the fires half take φ (\underline{A}) to be 1 三 $_{A}$ is unique'. (7.5) (a) is trivial and (b) follows from the fact that U is not convertible either to the form $\sqrt{-} u(\underline{Q})$ or to $\lambda u f x, u(\underline{R})$ were \mathbb{R} has u as a free variable. For (c): Suc (1) is not convertible to the form $\lambda u f x . u(\underline{R})$; the possibility of Sue (\mathbb{A}) representing on ordinal on account of (12) or (14) is therefore eliminated. By (13) Such (\underline{A}) represents $\alpha^{\prime}+1$ if \underline{A}^{\prime} represents α^{\prime} and $\operatorname{Suc}(\underline{A})$ cons $\operatorname{Suc}\left(A^{\prime}\right)$ - If me sup pose A represents α, then $G, \underline{A}^{\prime}$ being C-K ordinal formulae are convertible to the forms λ ufa $x, \underline{B}^{\prime}, \lambda$ up $x, B^{\prime} \quad$ but then by (ii) B con $B^{\prime} i . e$. \underline{A} conv A^{\prime}, and therefore by the hypothesis $\varphi(A), \alpha=\alpha^{\prime}$. Then $=\rho_{u c}(A)=\alpha^{\prime}+1$ is unique. For (d) : $\lambda u f x, u(R)$ is not convertible to the form Sac (G) or to U if R has u as a free variable. If $\lambda u f x, u$ (\mathbb{R}) repro sents an ordinal it is therefore in virtue of (14), possibly together with (II). Now if $\lambda u / x . u(R)$ cons λ af $f \cdot 4\left(\mathbb{R}^{\prime}\right)$ then R con \underline{R}^{\prime}, so that the sequence $\lambda u f x, \underline{R}(1), d u f x . \underline{R}(2), \ldots$ In (14) is unique apart from conversions. Then by the induction hypothesis the sequence $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$ is unique. The only ordinal that is represented by λ af $x \cdot u(\underline{R})$ is the upper bound of this sequence which is unique.

For the second half we use a type of argument rather different
from our transfinite induction principle. The formulae B for which $\underline{F}<\underline{B}$ form the smallest class for which

Suc (1) belongs to the class.
If C belongs to the class then Suc (\subseteq) belongs to it.
If $\lambda u f x . R(\underline{u})$ belongs to the class and $\lambda u f x, \underline{R}(\underline{n})<\lambda u f x, \mathbb{R}(\underline{m})$ where m, n are some positive integers then $\lambda u f x . l(R)$ belongs to it.

If C belongs to the class end C cony C^{\prime} then C^{\prime} belongs to it.

It will suffice to prove that the class of formulae B for which either $=\frac{B}{B}$ does not exist or $=\underline{B}<\underline{B}$ satisfies the conditions
(7.6). Now

$$
\overline{Z S}_{u c(\underline{B})}=\sum_{\underline{A}}+1>=\bar{A}
$$

If $=\lambda_{u f x} \underline{R(\underline{n})}$ does not exist then $-\lambda_{u f x} u(\mathbb{R})$ does not exist, end therefore $\lambda_{u} f x .4$ (R) is in the class. If E I_{u} (x. $\mathbb{R}(\underline{u})$ exists and is greater than $-\underline{R}$ and $\lambda u f x . R(\underline{u})<\lambda u f x . R(\underline{m})$
then
so that $\lambda u f x$. u (R)belongs to the class.
Proof of (iv). We move this by induction with respect to \mathscr{A}. Take $\varphi(\underline{A})$ to be whenever $B<\underline{A}$ and $C<\underline{A}$ then $\underline{B}<\underline{C}$ or $C<\underline{B}$ or B cony C, $\varphi(U)$ follows from the fact that never have $B<U$. If he have $\varphi(A)$ and $B<\operatorname{Suc}(B)$ then either $B<A$ or B cony A; for car f ind D so that $B \leq D$,
and $D<S$ Sc (B) can be proved without appeasing either to (1) or (5); (4) does not apply so must have \supseteq con \underline{A}. Then if $\underline{B}<\operatorname{Suc}(\underline{B})$ and $\underline{C}<\operatorname{Suc}(\underline{A})$ we have four possibilities
$\underline{B} \operatorname{conv} \underline{A}, \underline{C}$ con \underline{A}
$\underline{B} \operatorname{conv} \underline{E}, \underline{C}<\underline{A}$
$\underline{B}<\underline{A}, \underline{G} \operatorname{conv} \underline{\theta}$
$\underline{B}<\underline{A}, \underline{C}<\underline{A}$
In the first case \underline{B} conv \subseteq, in the second $\subseteq<\underline{B}$, in the third $\underline{B}<\underline{C}$ and in the fourths the induction hypothesis applies.

Now suppose that $\lambda u f x . \underline{R}(\underline{n})$ is a $C-\mathbb{K}$ ordinal formula, $\lambda u f x . \underline{R}(b)<\lambda u f x . \underline{R}(S(\underline{n}))$ and $\varphi(\underline{R}(\underline{n}))$, for each positive intger n, and \underline{A} cons $\lambda_{u} x \cdot k(\underline{R})$. Then if $\underline{B}<\underline{\theta}$ this means that $\underline{B}<\lambda_{u} f x . \underline{R}(n)$ for some n; : we have also $\underline{C}<\underline{A}$ then $\underline{B}<\lambda u f x . \underline{R}\left(\underline{g}^{\prime}\right), \underline{C}<\lambda u f x . \underline{R}\left(n^{\prime}\right)$ sone n^{\prime}. Three for the B, \subseteq the required result follows rom $\left.\varphi\left(\lambda u f x . \underline{R} / n^{\prime}\right)\right)$.

Proof of (v). The conditions (C), (D) imply that the classes of interconvertible formulae $B, B<Q$ are rell-oxcered by the relation ' <'. We prove (v) bi (ordinary) transfinite ficiuction with respect to the order type α of the series formed br the 5 . classes; $(\alpha$ is in fact the solution of the equation $1+\alpha=$ EQ but we do not need this). Te suppose then that (v) is true for all or er types
 and the corresponding order type is smaller: E is therefore a $\mathrm{C}-\mathrm{K}$ ordinal formula. Tais expresses all consequences of the induction hypothesis that we need. There are three cases to consider.
(x) $\quad \alpha=0$
(v) $\alpha=\beta+1$
(x) α is of neither of the forms (x), (y).
In case (x) we must have 1 g cony U on account of (A). In case (y) there is a formula 1 such that $D<A$, and $B \leq D$ whenever $\underline{B}<\underline{\theta}$. The relation $\underline{D}<\underline{A}$ mast hold in virtue either of (1), (2), (3), or (4). It cannot be in virtue of (4) for then there would be $\underline{B}, \underline{B}<\underline{A}, \underline{D}<\underline{B}$ contrary to (c) taken in confunctimon with the definition of D. If it is in virtue of (s) then α is the upper bound of a sequence $\alpha_{1}, \alpha_{2} \ldots$ of ordinals, which are increasing on account of (iii) and the conditions $\lambda u p x . \underline{R}(\underline{n})<$ $<\lambda_{u} x_{x}$. $R(5(y))_{\text {in }}$ (3). This is inconsistent with $\alpha=\beta+1$. This means that (2) applies (after we have eliminated (1) by suitable conversions on \underline{A}, D) and we see that \underline{A} cons Suc (D); but since $\underline{D}<\underline{\cap}, \underline{D}$ is a $C-K$ ordinal formula, and $\underline{7}$ must therefore be a cK ordinal formula by (8). Nos take case (a). It is impossible that \underline{A} be of form $\operatorname{Suc}(\underline{D})$, for then should have $B<D$ whenever $\underline{B}<\underline{A}$ which would mean that we had case (y). Since $U<\underline{\theta}$ there must be an \underline{F} such that $\underline{F}<\underline{f}$ is demonstrable either by (2) or by (3) (after a possible conversion on ㄷ) ; it must of course be demonstrable by (3). Then \underline{A} is of form $\lambda u f x, u(R)$. By (3), (B) we see that $\lambda u f x, R(u)<\theta$ for each positive integer n; each $\lambda u f x . R(\underline{n})$ is therefore a $c-\mathrm{c}$ ordinal formule. Applying (9), (B) we see that I is a C-K ordinal formula. Prog f of ∇i. To prove the first half it suffices to find a method whereby from a C-K ordinal formula I we can find the
corresponding ordinal formula $\underline{\Omega}$. For then there is a formula H_{1} such that $H_{1}(\underline{a})$ con \mathcal{P} if a is the G.R. of \underline{A} and \mathcal{P} that of Q. H is then to be defined by

$$
H \rightarrow \lambda a . \text { form }\left(H_{1}(\operatorname{Gr}(a))\right)
$$

The method for finding \underline{Q} may be replaced by a method oi finctac Q (m, \underline{n}) seven \underline{A} and any two positive integers $m, w . T e$ shall arrange the method so that whenever A is not an ordinal formule either the calculation of the values does not comes to an end or else the values are not consistent with \underline{Q} being an ordinal formula. In this war can prove the second hall of (vi).

Let $L s$ be a formula such that $L s(\underline{A})$ enumerates the classes of formula $\underline{B}, \underline{B}<\underline{\theta}$ (ie. if $\underline{B}<\underline{A}$ there is one and only one positive integer n for which $L S(\underline{A}, \underline{n})$ con B). Then the rule for finding the value of $\underline{L}(\mathrm{~m}, n)$ is as follows -

First determine whether $U \leqslant \mathbb{A}$ and whether \underline{A} is convertible to the form $r(\operatorname{Suc}, U)$. This comes to an end if I is a $C-X$ ordinal formula.

If \underline{A} cons $r($ Sue, $U)$ and either $m>r+1$ or $n>r+1$ then the value is 4. If $m<n \leq r+1$ the value is 2. If $n<m \leq r+1$ the value is 1 . If $m=n \leq r+1$ the value is 3 .

If A is not convertible to this form determine whether of the θ or $L S(\underline{A}, m)$ is convertible to the form $\lambda u f x, u(\mathbb{R})$ and if either of them is we verify that $\lambda u f x, \underline{R}(\underline{u})<\lambda u f x . \underline{R}(S(\underline{a}))$ We shall eventually cones to an affirmative answer if A is a $C-K$ ordinal formula.

Having chocked this we dotarane of m ，whether $\operatorname{Ls}(\underline{B}, \underline{m})<\operatorname{Ls}(\theta, \underline{n})$ $L s(\underline{A}, \underline{n})<L S(\underline{A}, \underline{m})$ ，or $m=n$ ，and the value is to be accordingly 1,2 ，or 3 ．

If \underline{A} is a $C-\mathbb{x}$ ordinal formula this process certainly comes to an end． To see that the values so calculated correspond to an ordinal for－ mola，and one representing $\equiv_{\underline{R}}$ ，first observe that this is so when三 $_{A}$ is finite．In the other case（iii），（iv）show that Ξ_{B} deter－ mines a coo－one correspondence between the ordinals $\beta, 1 \leq \bar{\beta} \leq$ 三 $_{1}$ and the classes of interconvertible formulae $\underline{B}, \underline{B}<\underline{A}$ ．If we take $G(m, n)$ to $L s(\underline{A}, m)<L s(\underline{A}, \underline{n})$ we that $G(m, n)$ is the ordering relation of a series of order type ${ }^{15}$ 三 and on the other is infinite． hand that the values of $\underline{\underline{O}}(\underline{m}, \underline{n})$ are related to $\bar{G}(n, n)$ as on $p .23$ ． To prove the second half suppose iq is not a C－K ordinal formula． Then one of the conditions（ A ）－（ D ）in（ v ）must not be satisfied． If（A）is not satisfied we shall not obtain a result even in the calculation of $⿻(1,1$ ）．If（B）is not satisfied，for sone positive integers P, q shall have $\operatorname{Ls}(A, p)$ cont $\lambda u f x \cdot u(\underline{R})$ bot not $\lambda u / x \cdot \underline{R}(\underline{q})<\lambda u / x \cdot \bar{R}(S(\underline{q}))$ ．Then the process of calculating $\underline{L}(\underline{p}, \underline{q})$ will not coss to an end．In
 calculable but condition（b），（d），or（s）p．29， 30 will be violated． Thus if \underline{A} is not a $C-\mathbb{x}$ ordinal formula then $H(B)$ is not an or－
dina formula.
I propose now to define three formulae Sum, dim, Inf of imporm tance in connection with ordinal formulae. As they are compartively simple they will for once be riven almost in full: The formula U_{g} is one with the property that $U_{g}(m)$ is convertible to the formula representing the largest odd integer dividing m : it is not given in full. Pis the predecessor function; $P(S(m) c o n v m$.

$$
\begin{aligned}
& A L \rightarrow \lambda p x y \cdot p(\lambda g u v \cdot g(v, u), \lambda u v \cdot u(I, v), x, y) \\
& H_{f} \rightarrow \lambda m \cdot P(m(\lambda g u v \cdot g(v, S(u)), \lambda u v \cdot v(I, u), I, 2)) \\
& B_{d} \rightarrow \lambda w w^{\prime} a a^{\prime} x \cdot B L\left(\lambda f \cdot w\left(a, a, w^{\prime}\left(a^{\prime}, a^{\prime}, f\right)\right), x, 4\right) \\
& S_{m} \rightarrow \lambda w w^{\prime} P q . B d\left(w, w^{\prime}, H f(p), H f(q), F l\left(p, A l\left(q, w^{\prime}(H f(p)) H f(q)\right)\right),\right.
\end{aligned}
$$

$$
\text { 1), } A L(q, 2, v(H f(p), H f(q)\}))
$$

$$
\begin{aligned}
\operatorname{dim} \rightarrow & \lambda z p q \cdot\left\{\lambda a b . \operatorname{Bd}\left(z \left(a ;, z(b), U_{g}(p), U_{g}(q), A l(\operatorname{Dt}(a, b)+\right.\right.\right. \\
& \left.\left.\left.+\operatorname{Dt}(b, a), \operatorname{Dt}(a, b), z\left(a, U_{g}(p), U_{g}(q)\right)\right)\right)\right\}(\theta(2, p), \theta(z, q))
\end{aligned}
$$

$\ln f \rightarrow \lambda w a p q$. $A l(\lambda f, w(a, p, w(a q, f i), w(p q q), 4)$
The essential properties of these formulae are described by

$$
\begin{array}{ll}
\text { Al }(2 \underline{r}-1, m, \underline{n}) \text { conv } \underline{m} & H\left(\left(2 r, \underline{n_{1}}, \underline{4}\right) \text { conv } n\right. \\
H f(2 \underline{m}) \text { conv } \underline{m} & H f(2 m-1) \text { conv }-m
\end{array}
$$

$B d\left(\underline{Q}, \underline{\underline{Q}}, \underline{\underline{a}}, \underline{a}^{\prime}, x\right)$ cont 4 unless both $\underline{\underline{Q}}(\underline{a}, \underline{a}) \operatorname{conv} 3$ and $\underline{\underline{Q}}^{\prime}\left(\underline{\underline{a}}^{\prime}, \underline{a}^{\prime}\right)$ conv 3 in which case it is convertible to X.

If Q, \underline{Q} 'are ordinal formulae representing α, β respectively then $\operatorname{Jum}\left(\underline{Q}, \underline{Q} \underline{Q}^{\prime}\right)$ is an ordinal formula representing $\alpha+\beta$. If Z is a N.F.E. enumerating a sequence of annal formulae repro$\operatorname{senting} \alpha_{1}, \alpha_{2}, \ldots$, then $\operatorname{\alpha im}(z)$ is an ordinal formula representing the infinite sum $\alpha_{1}+\alpha_{2}+\alpha_{3}+\ldots$. If \underline{Q} is an ordinal formula representing α then $\ln f(\underline{Q})$ enumerates a sequence of ordinal formulae representing all the ordinals less than α without repetitions.

To prove that there is no general method for determining of a formal whether it is an ordinal formula we use an argument ain to that leading to the Burali-Forti paradox, but the emphasis and the conclusion are different. Let us suppose that such an algorition is available. This enables us to obtain a recursive entacration Q_{1}, \underline{Q}_{2}. . . of the ordinal formula in normal for. There is a formula Z such that $Z(\underline{n})$ conv \underline{Q}_{n}. Now $\operatorname{Lim}(\underline{Z})$ represents an ordinal greater than any represented by an \underline{O}_{h}, and has therefore been omitted From the emmeration.

This ergunnt proves more than was originally asserted. In fact it proves that if we tace any class fop ordinal comulse in norma? form, such that if 19 is any ordinal formae then there is a formal in E representing the same oritna as A, then there is no method whereby one can tell whether a T.F.F. in normal fora belong to E.

8. Orainal logics.

An ordinal logic is a T.F.F. 1 suci that $\Lambda(\underline{Q})$ is a logic formula whenever \underline{Q} is an ordinal formula.

This definition is intended to bring under one heading a number of ways of constructing logica which have recently been proposed or are sugested by recent adivances. In this section I propose to show how to obtain some of these ordinal logics.

Suppose wo have a class W of logical systems. The symbols used in each of these systems are the same, and a class of sequences of aymbols called 'formulae' is defined, independently of the particuler system in W. The rules of procedure of a system C define an axiontic subset of the formulae, they nre to be dexcribed as the 'provable formulae of C. Suppose further that we have a method whereby, from any system of C of W can obtain a nev systam C^{\prime}, also in W, and such that the set of provabla formulae of C^{\prime} include the provable formulae of C (me shall be nost interested in the case where they are included as a proper subset.) It is to be understood that this "mathod" im an effective procedure for obtaining the rules of procedure of C^{\prime} fron those of C.

Suppose that to certain of the formulae of W we make correspond number theoretic theorems: by modifying the definition of formula we may suppose thet this is done for all formulae. We shall say that one of the systems C is valid if the provability of a formuIa in C implies the truth of the correspondine number theoretic theorem. Now let the relation of C^{\prime} to C be such that the
validity oi C implies the valisty of C^{\prime}, and let the o be e valid system C_{0} in W. Finally suppose that given any coraputhole sequence C_{1}, C_{2}, \ldots or systems in W the 'limit syatera' in minis a formule is movable in and only if it is provable in one of the systems C_{j} also belongs to W. Tine se limit system are to be regard 1 , not as functions ox the sequence given in extension, but as functions Of the mules of formation of their terms. A sentence fiver in externsion ma be described by various mile of formation, and there will be several corresponding limit systems. Each of these may bo ceacrived as \& Limit system of the sequence.

Under these circumstances so nary construct an ordinal logic. Int us associate positive integers with the s_{0} stan, in such a way that to each C corresponds a positive integer ${ }^{m_{C}}$, and m_{C} completely describes the rules of procedure of C. Then there is a \bar{Y}.TIT. K such that $\underline{K}\left(\underline{m}_{c}\right)$ conv \underline{m}_{C}, tor each C in W, and there is a TUFF. Θ such that if $D(r)$ cons $m_{C_{r}}$ for each positive integer r then $\Theta(D)$ cons \underline{m}_{C} where C is a init orstem of C_{1}, C_{2}, - . Fth once sites C or W it is posable to us aciate a logic formula $\frac{L}{C}$ ta relation between the is that if G la coral of W and the number theoretic theorem corceaponains to G (aseuned expressed in the conversion calculus ion) asserts that \mathcal{B} is dual, then $S_{C}(B)$ cont 2 if and on dy if G is provable in C. Terr mill be a T.F.F. G such that $G\left(\underline{m}_{C}\right)$ cont \underline{L}_{C} for each C of W. pat

$$
\underline{N} \rightarrow \lambda a \cdot G\left(a\left(\Theta, \underline{K}, \underline{m} c_{0}\right)\right)
$$

I assert that $N(\underline{\theta})$ is a logic formula for each $C-K$ ordinal formae A. and that if $\underline{A}<\underline{B}$ then $N(\underline{B})$ is more couple to than $N(\underline{\theta})$, provided that there are formulae provable in C^{\prime} bat not in C for each valid C of W.

To prove this we shell show that to each C-X ordinal formula there correspond e a unique system $C[G]$ such that
(i) $\underline{A}\left(\underline{\Theta} \underline{K}, \underline{m} c_{0}\right) \operatorname{conv} \underline{m}_{c_{0}}{ }^{\prime}$ and that it further satisfies
(ii) $C[U]$ is a u init system of $C_{0}^{\prime}, C_{0}^{\prime}, \cdots$
(iii) $C[\operatorname{Suc}(\underline{A})]$ is $(C[\underline{\theta}])^{\prime}$
(iv) $C[\lambda u f x \cdot u(\underline{R})]$ is limit system of $C[A u f x, R(I)]$,
$C[\lambda u \mid x . \underline{R}(2)] \cdots \cdots$

- and $\lambda \quad u f x . u(\underline{R})$ being assured to be C-K ordinal formulae.

The uniqueness of the system follow from the fact that m determines C completely. Let us try to prove the existence of $C[\underline{A}]$ for each $C-\mathbb{R}$ ordinal formula A. As have seen ($\mathrm{p}, 33$) it suffices to prove
(a) $C[U]$ exists,
(b) if $C[A]$ exists then $C[\operatorname{Suc}(B)]$ exists,
(c) if $C[\lambda u f x, \mathbb{R}(1)], C[\lambda u \mid x, \mathbb{R}(2)], \ldots$ exist then $C[\lambda u \mid x, u(R)]$ exists.

Proof of (a).

$$
\left\{\lambda y \cdot \underline{K}\left(y\left(\underline{I}, m_{c_{0}}\right)\right)\right\}(\underline{u}) \quad \operatorname{conv} \quad \underline{K}\left(\underline{m}_{c_{0}}\right) \quad \operatorname{conv} \underline{m}_{c_{0}}{ }^{\prime}
$$

for all positive integers n, and therefore by the definition of Θ there is a system, which re will call $C[U]$, and which is a limit system of $C_{0}{ }^{\prime}, C_{0}{ }^{\prime}, \ldots$, satisfying
$\Theta\left(\lambda y, \underline{K}\left(y\left(\underline{I}, \underline{m}_{c_{0}}\right)\right)\right) \operatorname{conv} \quad \underline{m} c[U]$
But on the other hand

$$
U\left(\Theta, \underline{K}, \underline{m_{c}} c_{0}\right) \quad \operatorname{con} \Theta\left(\lambda y \cdot \underline{K}\left(Y\left(I, \underline{m}_{1}\right)\right)\right)
$$

This proves (a) and incidentally (ii)
Proof of (b).

$$
\begin{aligned}
& \operatorname{Suc}\left(\underline{A}, \underline{Q}, K, \underline{m}_{c_{0}}\right) \operatorname{conv} \underline{K}\left(\underline{A}\left(\underline{\Theta}, \underline{K}, \underline{m}_{c_{0}}\right)\right) \\
& \operatorname{conv} \underline{K}(\underline{m} c[Q]) \\
& \operatorname{conv} \quad \underline{m}(C[Q])^{\prime}
\end{aligned}
$$

Hence $C[\operatorname{Suc}(\mathbb{O})]$ exists and is given by (iii).
Proof of (c).

$$
\begin{aligned}
\left\{\{\lambda u f x \cdot \underline{R}\}\left(\underline{\Theta}, \underline{K}_{m_{c}}\right)\right\}(\underline{u}) \operatorname{conv} & \{\lambda u f x \cdot \underline{R}(\underline{u})\}\left(\underline{\Theta}, \underline{I_{1}}, \underline{m}_{c_{0}}\right) \\
\operatorname{conv} & \underline{m}_{c}[\lambda u f x \cdot \underline{R}(\underline{u})]
\end{aligned}
$$

by hypothesis. Consequently by the definition of Θ there exists C which is a limit system of $C[\lambda u f x . \underline{R}(I)], C[\lambda u f x, \underline{R}(2)]$. and satisfies

$$
\Theta\left(\left\{\lambda_{u} \mid x \cdot \underline{R}\right\}\left(\Theta, \underline{K}, \underline{m}_{c_{0}}\right)\right) \text { conv } \underline{m}_{c}
$$

We define $C[$ du fx.u (R) $]$ to be this C. We then have (iv) and

$$
\begin{array}{r}
\{\lambda u f x, u(R)\}\left(\Theta, \underline{K}, \underline{m}_{0}\right) \operatorname{conv} \Theta\left(\{\lambda u f x \cdot R\}\left(\Theta, \underline{\xi}, m_{C_{0}}\right)\right) \\
\operatorname{conv} \underline{m} C[\lambda u, f x, u(R)]
\end{array}
$$

This completes the proof of the properties (i) - (iv). From (ii), (iii), (iv) the facts that C_{0} is valid and that C^{\prime} is valid when C is valid infer that $C[\mathbb{B}]$ is valid for each $C-K$ ordinal formula A s leo that there are more formulae provable in $C[\underline{B}]$ than in $C[E]$ when $\underline{A}<\underline{B}$. The truth of our assestins regarding N follows now in view of (i) and the definitions
of N and \underline{G}.
We cannot conclude the N is an ordinal logic, since the formulae If mere C-X ordinal formulae, but the formula H enables us to obtain an ordinal logic from N. By the use of the formula Gr we obtain a formula Th much that if A has a normal form then Tn (N) enumerates the G. As, of the formula into which A is convertible. Also there is a formula $C K$ such that if h is the G.R. of a formula $H(\underline{B})$ then $C K(\underline{h})$ cons B, but otherwise $C K(\underline{h})$ cons U. since $H(\underline{B})$ is an ordinal formula only if \mathcal{B} is a C-K ordinal formola, $C k(\operatorname{Th}(\underline{Q}, 4))$ is a $C-K$ ordinal formula for each ordinal formula Q and integer h. For many ordinal formulae it will be convertible to U, but for suitable \underline{Q}, n it will be convertible to say given C-E ordinal formula. If we put

$$
\underline{\Lambda} \rightarrow \lambda w a \cdot T(\lambda n \cdot N(\operatorname{Ck}(\operatorname{Tn}(w, n)), a)
$$

Λ will be the required ordinal logic. In fact on account of the properties of $T, \underline{L}(\underline{Q}, \underline{A})$ will be convertible to 2 if and only if there is a positive integer h such that

$$
\underline{N}(\operatorname{C}(\operatorname{Tn}(\underline{Q}, \underline{n})), \underline{A}) \operatorname{conv} 2
$$

If Q cons $H(\underline{B})$ there will be an integer n such that $C k(\operatorname{Tn}(\underline{Q}, n))$ cont B, and then $N(C k(\operatorname{Tn}(\underline{0}, \underline{n})), \underline{A}) \quad \operatorname{conv} N(\underline{B}, \underline{A})$
For any $n, C k(\operatorname{Tn}(\underline{Q}, n))$ is convertible to U or to same B where \underline{O} cony $H(\underline{B})$. Thus $\Lambda(\underline{Q}, \underline{A})$ conv 2 if Q cont $H(B)$ and $N(\underline{B}, \underline{A})$ conv 2 or if $N(U, \underline{A})$ con 2 , but not in any other case.

We way now specialize and consider particular classes W of systems. Pirst let us try to oonstruct the ordinal logic described roughly in the introduction. For W we take the class of syiteme arisine fron the system of Principia Machenatica ${ }^{16}$ by adjoinine to $\overline{16}$

Witehesd and Russell [1]. The axions and rules of procedure of a sirilar syetem P will be found in a convenient form in Gödel [1]. I shall follow codel. The symbola for the natural numbers in P are $0, f 0, f f 0, \ldots f^{(n)} 0 \ldots$. Variablea with the oufflx "o" stand for natural numbers.
$----------------------17---$ It axiomatic (in the sense described on p.10) sets of axions ${ }^{17}$.
$\overline{17}$ It is sometimes regarded as necessary that the set of axioms used be computable, the intention being that it mould be possible to verify of a formula reputed to be an axion whether it really is so. Te can obtain the aame effect with axiomatic aets of axioms in this way. In the rules of procedure describing which are the axions we incorporate a method of enuseratinE thea, and we also introduce a rule that in the main part of the deduction whenever write down an axiom as such we mat also write dom its position in the enumeration. It is possible to verify whether this has been done correctly.
Gödel has show that primitive recursive relations ${ }^{18}$ can be expressed 18- relation $F\left(m_{1}, \ldots, m_{r}\right)$ is prinitive recursive if it is the necessary and sufficient condition for the vanishing of a prinitive recuraive function $\varphi\left(m_{1}, \cdots, m_{r}\right)$. by meane of formulae in 9 . In fact there 1.3 a rule whereby given the
recursion equations defining a primitive recursive relation
me can find a formula 19 M $\left[x_{0}, \ldots, z_{0}\right]$ such that $M\left[f^{\left(m_{1}\right)} 0, \ldots, f^{\left(m_{r}\right)} 0\right]$ 19

Capital German letters will be used to stand for variable or undetermined formulae in P. An expremsion such as $\operatorname{Mr}[\mathcal{d}, \mathcal{K}]$ will stand for the result of substituting \mathscr{C} and \mathcal{L} for x_{0} and y_{0} in M is provable in p if $F\left(m_{1}, \ldots, m_{r}\right)$ is true, and its ne ation is provable otherwise. Further there is a method by which one can tell of a formula $\mathcal{M}\left[X_{0}, \ldots, z_{0}\right]$ whether it arises from a priaitive recursive relation in this way, and by which one can find the equations
which defined the relation. Formulae of this kind will be called recursion formulae. Fe shall make use of a property they have, which we cannot prove formally here without giving their definition in full, but mitch is essential y trivial. $D b\left[x_{0}, y_{0}\right]$ is to stand for a certain recursion formula such that $D b\left[f^{(m)} 0, f^{(n)} 0\right]$ is provable in P if $m=2 n$ and its negation is provable otherwise. Suppose that $\mathscr{M}\left[x_{0}\right], \mathcal{V}\left[x_{0}\right]$ are two recursion formulae. Then the theorem I am assuming is that there is a recursion relation

$$
\begin{array}{r}
\mathcal{L}_{\text {or, } \operatorname{de}}\left[x_{0}\right] \equiv\left(\exists y_{0}\right)\left(\left(\operatorname{Db}\left[x_{0}, y_{0}\right], 1 q\left[y_{0}\right]\right) v\right. \tag{8.1}\\
\left.\vee\left(D b\left[f x_{0}, f y_{0}\right] \cdot \mathcal{d}\left[y_{0}\right]\right)\right)
\end{array}
$$

in P .
The significant formulae in any of our extensions of P are those of the form

$$
\begin{equation*}
\left(x_{0}\right)\left(\exists y_{0}\right) d\left[x_{0}, y_{0}\right] \tag{8.2}
\end{equation*}
$$ where $12\left[x_{0}, Y_{0}\right]$ is a recursion formula, arising frow the relation $\mathcal{K}(m, n)$ let us say. The corresponding number theoretic theorem states that for each natural number m there is a natural number w such that $R(m, n)$ is trio.

The systems in W which are not valid are those in which a formal of form (8.2) is provable, but at the same time there is a natural number, w say, such that for each natural number W,

$$
R(m, n) \text { is false. This means to say that } \sim \mathcal{N}\left[f^{(m)} O, f^{(n)} 0\right] \text { is }
$$ provable for each natural number W. Since (8.2) is provable

$\left(\exists y_{0}\right) M\left[f^{(m)} 0, y_{0}\right] \quad$ is provable, so that
$\left(\exists y_{0}\right) M\left[f^{(m)} 0, y_{0}\right], \sim M\left[f^{(m)} 0,0\right] \sim M\left[f^{(m)} 0, f 0\right]_{\ldots(8 . z)}$
are all provable in the system. Te may simplify (8.8). For a given m me may prove a formula of form $\mathcal{M}\left[f^{(m)} 0, Y_{0}\right] \equiv \mathcal{U}\left[y_{0}\right]$ in P, where $\mathscr{C}\left[y_{0}\right]$ is a recursion formula. Thus we find that the necessary and sufficient condition for a system of W to be valid is that for no recursion formula $\mathcal{C}\left[X_{0}\right]$ are all oi the formulae $\left(\exists x_{0}\right) \operatorname{db}\left[x_{0}\right], \sim \mathscr{d}[0], \sim \operatorname{do}[f 0], \ldots$
provable. An important consequence of this $1 s$ that if $M_{1}\left[x_{0}\right], \quad M_{2}\left[x_{0}\right], \ldots, \quad M_{n}\left[x_{0}\right]$ are recursion formulae and $\left(\exists x_{0}\right) M_{1}\left[x_{0}\right] \vee\left(\exists x_{0}\right) M M_{2}\left[x_{0}\right] \vee \ldots v\left(\exists x_{0}\right) M_{n}\left[x_{0}\right]$ (8.5) is provable in C, and C is valid, then we can prove $\operatorname{Mr}_{r}\left[f^{(a)} 0\right]$ in C for some natural number r, a where $1 \leqslant r \leqslant h$. Let us define D_{r} to be the formula

$$
\left(\exists x_{0}\right) \mathscr{M}_{1}\left[x_{0}\right] \vee \ldots \vee\left(\exists x_{0}\right) \mathscr{M}_{r}\left[x_{0}\right]
$$

and define $\operatorname{E}_{r}\left[x_{0}\right]$ recursively by the condition that $\mathcal{B}_{1}\left[x_{0}\right]$ be $M_{1}\left[x_{0}\right]$ and $E_{r+1}\left[x_{0}\right]$ be $\mathcal{E}_{E_{r}}, \mathscr{R}_{r+1}\left[x_{0}\right]$. Now I say that

$$
\begin{equation*}
\theta_{r} \supset\left(\exists x_{0}\right) \quad E_{r}\left[x_{0}\right] . \tag{8.6}
\end{equation*}
$$

is provable for $l \leqslant r \leqslant h$. It is clearly provable for $r=1$: suppose it provable for a given r. Fe can prove

$$
\left(y_{0}\right)\left(\exists x_{0}\right) \quad \operatorname{Db}\left[x_{0}, y_{0}\right]
$$

and

$$
\left(y_{0}\right)\left(\exists x_{0}\right) D b\left(f x_{0}, f y_{0}\right)
$$

from which we obtain

$$
E_{r}\left[y_{0}\right] \supset\left(\exists x_{0}\right)\left(\left(D b\left[x_{0}, y_{0}\right] \cdot E_{r}\left[y_{0}\right]\right) \vee\left(D b\left[x_{0}, y_{0}\right] \cdot O_{r+1}\left[y_{0}\right]\right)\right)
$$

and

$$
q_{r+1}\left[y_{0}\right] \supset\left(\exists x_{0}\right)\left(\left(D b\left[x_{0}, y_{0}\right] \cdot E_{r}\left[y_{0}\right]\right) \vee\left(D b\left[x_{0}, y_{0}\right] \cdot v_{r+1}\left[\left[_{d}\right]\right)\right)\right.
$$

These together with (8.1) yield

$$
\left(\exists y_{0}\right) \varepsilon_{r}\left[y_{0}\right] \vee\left(\exists y_{0}\right) v_{r+1}\left[y_{0}\right] \supset\left(\exists x_{0}\right) \mathcal{\alpha}_{\beta_{r}, v_{r+1}}\left[x_{0}\right]
$$

which suffices to prove (8.6) for $r+1$. Now since (8.5) is provable in $C,\left(\exists x_{0}\right) E_{n}\left[x_{0}\right]$ must be also, and since C is valid this means that $\mathscr{B}_{n}\left[f^{(m)} 0\right]$ must be provable for some natural number in . From (8.1) and the definition of E fEn $\left[X_{0}\right]$ we see that this implies that $\mathscr{Z}_{r}\left[f^{(a)} 0\right]$ is provable for some natural number a, and integer $r, l \leqslant r \leq h$.

To any system C of W can assign a primitive recursive relation $P_{C}(m, n)$ with the intuitive meaning is the G.R. of a proof of the formula whose G.R. is w '. The corresponding recursion formula is Proof $\left[x_{0,} Y_{0}\right]$ (ie. Proof c $\left[f^{(m)} 0, f^{(n)} 0\right]$ is provable when $P_{C}(m, n)$ is true, and its negation is provable otherwiesel. We can now explain what is the relation of a system C^{\prime} to its predecessor C. The set of axioms which we adjoin to P to obtain C^{\prime} consists of those aijointed in obtaining C, together with all formulas of the form

$$
\begin{equation*}
\left(\exists x_{0}\right) T w o f c\left[x_{0}, f^{(m)} 0\right] \supset f \tag{8.7}
\end{equation*}
$$ where the is the G.R. of f.

is provable in C. But by repetition of a previous argument this means that \mathcal{C}_{l}^{\prime} is provable for some $\ell, l \leq l \leq K^{\prime}$ contrary to hypothesis. This is the required contradiction.

We may now construct an ordinal logic in the manner described on p. 44-48. But let us carry out the construction in rather more detail, and with some modifications appropriate to the particular case. Each system C of our set W may be described br means of a W.F.F. M C mich enumerates the G.Rs. of the axioms of C. There is a F.F.F. E such that if a is the $G . R$. of some proposition f then $E\left(M_{C}, \underline{a}\right)$ is convertible to the G.R. of
$\left(\exists x_{0}\right) \operatorname{Prof}_{c}\left[x_{0}, f^{(a)} 0\right] \supset f$
If a is not the G.R. of any proposition in P then $E\left(M_{C}, a\right)$
is to convertible to the G.R. of $0=0$. From E^{-}we obtain a W.F.F. K such that $K\left(M_{C}, 2 n+1\right)$ conv $M_{C}(n), K\left(M_{C}, 2 \underline{n}\right)$ conv $E\left(M_{C}, n\right)$. The successor system C^{\prime} is defined by $K\left(M_{C}\right)$ con M_{C} '. Let us choose formula G such that $G\left(M_{C}, \underline{R}\right)$ conv 2 if and only if the number theoretic theorem equivalent to 'f is dual' is provable in C. Then we define Λ_{p} by

$$
\Lambda_{p} \rightarrow \lambda_{\operatorname{si}} \cdot T\left(\lambda_{y} \cdot G\left(C k\left(\operatorname{Tn}(\omega, y), \lambda m w, m(\varpi(2, n), \theta(3, u)), K_{1} M_{p}\right)\right)_{1}\right)
$$

This is an ordinal logic provided that P is valid.
Another ordinal logic of this type has in effect been introduced by Church ${ }^{20}$. Superficially this ordinal logic seems to have no wore 20 In outline Church [1], 279-280. In greater detail Church [2]: Chap. X .
-----------------------------------in common with Λ_{P} than that they both arise by the method re have described which uses C-K ordinal forming. The initial systems
are entirely different. However, in the relation between C and C^{\prime} there is an interesting analogy. In Church's method the step from C to C^{\prime} is performed by means of subsidiary axions of wich the most important (Church [2], p. 88, 1_{m}) is elmost a direct translation into his symbolism of the rule that we may take any formula of form (8.4) as an axiom. There are other extra axioms, bowever, in Church's system, and it is therefore not unlikely that it is in some sense more complete than Λ_{P}.

There are other types of ordinal logic, apparently quite unrelated to the type we have so far considered. I have in mind two types of ordinal logic, both of which can be best described directly in terms of ordinal formulae mithout any reference to C-K ordinal formulae. I shall describe here a specimen of one type, sustested by Hilbert (Hilbert [i], 183ff), and leave the other type over to $\hat{\%} 12$.

Suppose we have selected a particular ordinal formula 2 . Fe shall construct a modification $P_{\underline{Q}}$ of the system P of Gödel (see footnote ${ }^{16}$). Fe shall say that a natural number W is a type if it is either even or $2 p-1$ where $\underline{Q}(\underline{P}, \underline{p})$ conv 3. The definition of a variable in P is to be modified b the condition that the only admissible subscripts are to be the types in our sense. Elementary expressions are then defined as in P : in particular the definition of an elementary expression of type 0 is unchanged. An elementar; formula is defined to be a sequence of symbols of the form $O_{m} \mathscr{H}_{w}$ where M_{m}, \mathcal{M}_{w} are elementary expressions of types m, w satisfying one of the conditions (a), (b), (c).
(a) m and w are botin even and m exceeds w,
(b) m is odd and h is even,
(c) $m=2 p-1, n=2 q-1$ and $\underline{Q}(p, q)$ conv1. Fith these modifications the formal develoment of $P_{\underline{q}}$ is the sane as that of P. We wish however to have a method of associating number theoretic theorems with cortain of the formulae of $P_{\text {g }}$. Te cannot take over directly the association we used in P. Suppose G is a formia in P interpretable as a number theorctic theorem in the way we described when constructing $\Lambda_{P}(p, 50)$. Then if every type suffix in G is doubled we shall obtain a formula in P^{ρ} o whici is to be interpreted as the sane number theoretic theorem. By the method of $\mathcal{Z} 6$ we can now obtain frors $P_{\underline{Q}}$ a formula L_{Q} mich is a logic formula of ${ }^{P}$ 으 is valid; in fact given \underline{O} there is s methrd of obtaining $L_{\underline{O}}$, so that there is a ormula Λ_{H} such that $\Lambda_{H}(\underline{O})$ conv L ㅇ for each ordinal formula O.

Having now familiarized ourselves with ordinal iogics by means of these examples we may begin to consider genernl questions concerning then.

We wish to show that a contradiction can be obtainer? by assuming C^{\prime} to be invalid but C to be valid. Let us suppose that a set of formula of form (B.4) is provable in C^{\prime}. Let $\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots$ \mathscr{V}_{k} be those axioms of C^{\prime} of form (8.7) which are used in the proof of $\left(-x_{0}\right) \mathcal{L}\left[x_{0}\right]$ - Me may suppose that none of them are provable in C. Then by the deduction theorem we sse that

$$
\begin{equation*}
\left(v_{1} \cdot v_{2} \ldots v_{k}\right) \supset\left(\exists x_{0}\right) G\left[x_{0}\right] \tag{8.8}
\end{equation*}
$$

is provable in C. Let \mathscr{G}_{l} be $\left(\exists x_{0}\right) P_{\text {oof }}\left[x_{0}, f^{\left(m_{p}\right)} 0\right] \supset f_{e}$ Then frow (8.8) we find that
$\left(\exists x_{0}\right) P_{\operatorname{wof}_{c}}\left[x_{0}, f^{\left(m_{1}\right)} 0\right] \vee \ldots v\left(\exists x_{0}\right) P_{\operatorname{wrf}}\left[x_{0}, f^{\left(m_{k}\right)} 0\right] \vee\left(\exists x_{0}\right) \mathcal{N}\left[x_{0}\right]$
is provable in C. It follows from a result we have just proved that either $\mathcal{L}\left[f^{(c)} 0\right]$ is provable for some natural number C, or else $\operatorname{Prof} c\left[f^{(u)} 0, f^{\left(m_{l}\right)} 0\right]$ is provable in C for sone natural number u and some $l, \bar{l} \leqslant l \leqslant k$ but this would mean that f_{l} was provable in C (this is one of the points where assume the validity of C) and therefore also in C^{\prime}, contrary to hypothesis. Then $\mathcal{S}\left[f^{(c)} 0\right]$ must be provable in C; but we are also assuming $\sim \operatorname{do}\left[f^{(c)} 0\right]$ is provable in C^{\prime}. There is therefore a contradiction in C^{\prime}. Let us suppose that the axioms $\mathcal{M}_{1}^{\prime} \ldots \mathcal{L}_{K^{\prime}}^{\prime}$ of form (8.7) when adjoined to C suffice to obtain the contradiction and that none of these axioms are provable in C. Ten

$$
\sim v_{1}^{\prime} v \sim v_{2}^{\prime} v_{g^{\prime}} v \sim v_{k^{\prime}}^{\prime}
$$

is provable in C, and if $\mathcal{M}_{l}^{\prime \text { is }}\left(\exists x_{0}\right){ }_{\text {then }}^{\prime} P \operatorname{vof}_{c}\left[x_{0}, f^{\left(m_{l}^{\prime}\right)_{0}}\right] \supset f_{l}^{\prime}$

9. Completegess cuestions.

The purpose of introducing ordinal logies was to avoid as fer as possible the effects of Gödells theorem. It Is a consequence of this theorea, suitably modified, tant it ls mossible to obtain complete logic formala, or (roughly speaicing now) e complete syster of logic. Fe rere able, homver, from a given systen to obtain a more complete one Ey the dajunction es axions of formulae, ceen intustively to bo correct, but which the Godel theoren shows ere unproveble ${ }^{21}$ in the $\overline{2}$ In the case of p we adjoin all a the axions ($\left.\bar{x} x_{0}\right) P_{2} f_{p}\left[x_{0}, f^{(m)} 0\right]$, wher m is the G.t. of f, sone or which the Goinl theorect shows to be unprovable in P. orlzinal syatem; from this me obtained a yet more complete syster b a repetition of the process, and so on. rie cound that the repetition of the process gave us nex system for each C-K ordinal fommin Te should like to know whether thes process suificaz, or wether the system should be extended in other reys as sell. If it yere possibie to tell of a W.F.F. In normal form whetiver it pas an oadinal formina we shoule mow son certain that ft wes necessery to extenc in other wass. In fact for any ordinal formula 1 it wonle then be possible to ind a single logic formula \underline{L} such that if $\underline{\underline{Q}}(\underline{Q}, \underline{A})$ conv ε for sone ondinal formula \underline{Q} then $L(A)$ conv 2. Since L mast be incomplete there must be fommlaa A for whech $\Lambda(\underline{Q}, \underline{A})$ is not convertible to 2 for any ontinal formula $\underline{=}$. However, in Wher of the fact, proved in $\{7$, that there is no method of dsterwining of a formula in normil form whether it is an ordenel fomale, the case does not srise, and there is still a possibillty that some
ordinal logics may be complete in some sense. There is cuite a natural way of defining corpleteness.

Definition of comploteness of an ordinal loptc. Fe say thet an ordinal logic 1 is complete if for cach dual formula A there is an ordinal formula \underline{Q}_{A} auch that $\Omega\left(\underline{Q_{A}}, \underline{A}\right) \operatorname{conv} 2$.

As has been explained in $\mathcal{2} 2$, the refecence in tine definition to the existence of \underline{Q} f for each $\frac{q}{}$ ia to be understood in the sane naive mar as any reference to existence in mathematice.

There is room for nodification in this definitiont me might require that there be a formula X such that $X(A)$ conv \underline{O} X (A) beins an ordinal formia whenever $I 7$ is duel. Taere is no neaci, howerer, to diacuss the relative merits of these two definftions, because in 011 cases where we prove an ordinal logic to be complete we shall prove it to be complets aven in the modified sense, but in cases there prove an ordinal logic to be incomplete we use the definition as st stanas.

In the teminolog of $\mathcal{G} \underline{1}$ is complete it the class oi logics $1(\underline{Q})$ is complete when Ω mins through all ordinal iommas.

There is another completeness property minich is colated to tirs one. Let us for the moment say that an orinal logic 1 is all incluBive if to each logic formula L there corresponds an ordinal formula $\left.\underline{Q}_{(L)^{\text {guch that }} \leq(\underline{L}(L)}\right)$ is as complete as \leq cleorly every all inclusive ordinal logic is conplete, for if A is dual then $S(A)$ is a logic with G in its extent. But if Λ is complete and
$A i \rightarrow \lambda k w a . \Gamma\left(\lambda r . S\left(4, S\left(2, k(\omega, V(N m(r)))+S\left(2, N_{m}(r, a)\right)\right)\right)\right.$
then $A_{i}(\underline{\Lambda})$ is an all inclusive ordinal logic. For if A is in the extent of $1\left(\underline{Q}_{\underline{A}}\right)$ for each \underline{A}, and re put $\underline{O}(\underline{O}) \rightarrow \underline{Q}_{V(b)}$ then I say that if B is in the extent of \underline{L} it rust be in the extent of $A_{i}(\underline{\Lambda}, \underline{\underline{Q}}(\underline{L}))$. In fact $A_{i}\left(\underline{\Omega}, \underline{\Omega}_{v(L)}, \underline{B}\right)$ cont $\Gamma\left(\lambda r . S\left(4, \delta\left(2, \Lambda\left(\underline{Q}_{v(L)}\right), V(N m(r))\right)\right)+\delta(2, N m(r, \underline{B}))\right)$ For suitable $n, N m(\underline{n})$ cons L and then $\left.\underline{\underline{L}}\left(\underline{\Omega}_{V(\underline{L}}\right), V(N m(\underline{n}))\right)$ cont 2
$\mathbf{N}_{m}(\underline{n}, \underline{B})$
cont 2
and therefore by the properties of T, δ
$A_{i}(\underline{\Lambda}, \underline{\underline{Q}} v(\underline{L}), B) \operatorname{conv} 2$
Conversely $A_{i}\left(\underline{\Lambda}, \underline{Q_{q}}(\underline{L}), \underline{B}\right)$ can only be convertible to 2 if both $\operatorname{Nm}(y, B)$ and $\underline{1}(\underline{\underline{Q}} V(\underline{L}), V(\operatorname{Nm}(\underline{n}))) \quad$ are convertible to 2 for some positive integer w; but if $\Lambda\left(\underline{\underline{Q}}_{V(L)}, V(N m(\underline{n}))\right)$ con 2 then $\operatorname{Nm}(\underline{n})$ must be logic and since $\operatorname{Nm}(\underline{n}, \underline{B})$ cont 2, B must be dual.

It should be noticed that our definitions of completeness refer only to number theoretic theorems. Although it would be possible to introduce formulae analogous to ordinal logics which mould prove more general theorems than number theoretic ones, and have a correspodding definition of completeness, yet if our theorems are too general we shall find that our (modified) ordinal logics are never complete. This follows from the argument of \boldsymbol{Z} 4. If our 'oracle' tells us, not whether any given number theoretic statement is true, but whether a given formula is an ordinal formula, the argument still applies, and we find there are classes of problem which cannot
be solved by a uniform process even with the help of this oracle. This is equivalent to saying that there is no ordinal logle of tise proposed modified type wich is complete with respect to these problems. This situation becones more definite if re take formulae satisfying conditions (a) - (e), (f) (as described at the end of $\mathcal{f} 1 \mathrm{~F}$) instead of ordinal formulae; it is then not possible for the ording logic to be complete with respect to any class of problems aore extensive than the number theoretic problems.

We might hope to obtain some intellectually satisfying gysten of logical inference (for the proof of number theoretic theorems) with some ordinal logic. Gödel's theorem shows that such a system cannot be wolly mechanical, but with a complete ordinal logic we shouid be able to confine the non-mechanical steps entirely to verifications that particular formulae are ordinal formulae.

We wight also expect to obtain an interesting classification of number theoretic theorens according to 'depth'. A theorera which required an ordinal α to prove it would be deeper than one which could be proved by the use oil an ordinal β less than α. However, this presup oses more than is justified. Fe define

Definition of invariance of ordinal logies. An ordinal logic $\underline{1}$ is said to be invarient up to an ordinal α if, whenever \underline{Q}, Q are ordinal formulae representing the same ordinal less than α, the extent of $\underline{\Lambda}(\underline{Q})$ is identical with the extent of $\underline{\Omega}\left(Q^{\prime}\right)$. An ordinel logic is inveriant if it is invariant up to each ordinal represented by an ordinal formula.

Clearly the classification into depths presupposes that the ordinal logic used is invariant.

Among the questions we should now like to ask are
(a) are there any complete ordinal lagics?
(b) are there any complete invariant ordinal logics?

To these we might have added are all ordinal logins complete?'; but this is trivial; in fact there are ordinal logics with do not suffice to prove any number theoretic theorems whatever.

Fe shall now show that (a) must be answered affirmatively. In fact we can write down a complete ordinal logic at once. Put

$$
O d \longrightarrow \lambda a \cdot\left\{\lambda f_{m n} \cdot D t(f(m), f(u))\right\}\left(\lambda s \cdot \delta\left(\lambda r \cdot r\left(\frac{\tau}{,} a(s)\right), 1, s\right)\right)
$$

and

$$
\text { Comp } \rightarrow \lambda w a . \delta(w, O d(a))
$$

I shall show that Comp is a complete ordinal logic.
For

In fact if $(\operatorname{comp}(\underline{O}, A)$ cont 2 , then
O $\operatorname{conv} G d$ (B)
convey $\lambda m m \cdot \operatorname{Dt}(\beta(\lambda r \cdot r(I, Q(m), I, m)), \beta(\lambda r \cdot r(I, G(n)), I, n))$
O (m, u) has a normal form if Ω is an ordinal formula, so that then $\mathcal{F}(\lambda r . r(i, f(m)) 1)$ has a normal form; this means that $\underline{r}(I, f(\underline{m}))$ cons 2 some r, i. θ. $G(\underline{m})$ cony 2. Thus if $\operatorname{Comp}(\underline{Q}, \underline{A})$ conv 2 and Q is an ordinal formula then A is dual. Chip is therefore an ordinal logic. Now suppose conversely that f is dual. I shall show that $O \alpha(\mathbb{A})$ is an ordinal formula representing the ordinal ω. In fact

$$
\beta(\lambda \cdot r \cdot r(I, \beta(\mu)), 1, \underline{m}) \operatorname{cav} \beta(\operatorname{\lambda r} \cdot \cdot(I, 2), I, \underline{m})
$$

$$
\begin{gathered}
\operatorname{Gct}(A, \underline{m}, \underline{n}) \operatorname{con} \operatorname{Dt}(\underline{m}, \underline{n}) \text { cons } m
\end{gathered}
$$

ie. Od (G) is an ordinal formula representing the sarre oritial as Bt. But
$\operatorname{Comp}(\operatorname{Od}(\underline{B}), \underline{A}) \operatorname{conv} S(\operatorname{Gd}(\underline{\theta}), \operatorname{Od}(\underline{A})) \quad \operatorname{conv} 2$ This proves the completeness of Comp.
of course Comp is not the sind of complete ordinal logic that we should sally want to use. The use of Comp does not make it any easier to see that $\not \underline{A}$ is dual. In fact if me really want to use an ordinal logic a proof of completeness for that particular ordinal logic will be of little value; the ordinals given by the completeness proof will not be ones which can readily be seen intitively to be ordinals. The only value $\neq \frac{1}{\prime}$ completeness proof of this icing would have would be to show the if any objection is to be raised against an ordinal logic it must be on account of something more subtle then incompleteness.

The theorem of completeness is also unexpected in that the ordinal formulae used are all formulae representing ω. This is contrary to our intentions in constructing Λ_{P} for instance; inplicitly we had in mind large ordinals expressed in a simple manner Here we have small ordinals expressed in a very complex and artifical reg.

Before trying to solve the problem (b), let us see how ar Λ_{p} and Λ_{T} are invariant. We should certainly not expect Λ_{P} to be invariant, as the extent of $\Lambda_{p}(\underline{R})$ vil depend on whether \underline{O}
is convertible to a formula of form $H(\underline{A})$: but suppose we call an or dina logic Λ cK invariant up to α if the extent of $\underline{\Lambda}(H(B))$ is the same as the extent of $\underline{\wedge}(H(\underline{B}))$ menever \underline{A} and \underline{B} are C-X ordinal formula representing the same ordinal lass than α. How far is Λ_{p} C-K invariant? It is not difficult to see that it is C-K invariant up to any finite ordinal, that is to say up to ω. It is also C-K invariant up to $\omega+1$, and follows from the fact that the extent of $\Lambda_{T}(H(\lambda u f x \cdot u(\mathbb{R})))$ is the set theoretic sum of the extents of

$$
\Lambda_{T}(H(\lambda u f x \cdot \underline{R}(I))), \Lambda_{p}(H(\lambda u f x \cdot \underline{R}(2))), \cdots
$$

However, there is no obvious reason to believe the $1 t$ is C-K invariant up to $\omega+2$, and in fact it 13 demonstrable that this is not the case (see the end of this section). Let us try to see what happens if we try to prove that the extent of $\Lambda_{T}\left(H\left(\operatorname{Suc}\left(\lambda u f x \cdot u\left(R_{1}\right)\right)\right)\right)$ is the same as the extent of $\Lambda_{p}\left(M\left(\operatorname{Sue}\left(\lambda u f x \cdot u\left(R_{2}\right)\right)\right)\right.$ where dufx.u($\left.R_{1}\right)$ and $d_{u} f x . u\left(\underline{R}_{2}\right)$ are two $C-K$ ordinal formulae representing ω. We should have to prove that a formula interpretable as a theorem of number theory in provable in $C\left[\operatorname{Suc}\left(\lambda_{u} f x \cdot u\left(\underline{R}_{1}\right)\right)\right]$ if and only If It is provable in $C\left[\operatorname{Suc}\left(\lambda u f x \cdot u\left(\underline{R}_{2}\right)\right)\right]$. Now $C\left[\operatorname{Suc}\left(\lambda u f x \cdot u\left(\underline{R}_{1}\right)\right)\right]$ is obtained from $C\left[\lambda u f x, u\left(R_{1}\right)\right]$ br adjoining all axioms of form
$\left(\exists x_{0}\right) P_{n u f}\left[\left[x u-f x: u\left(R_{1}\right)\left[x_{0}, f^{(m)}\right)\right] \supset f\right.$
where m is the G.R. of f, and $C\left[S u c\left(A u f x \cdot u\left(R_{2}\right)\right)\right]$ is obtained from $C\left[\lambda u f x \cdot u\left(\mathbb{R}_{2}\right)\right]$ by adjoining all axioms of . form

The axions which aust be adjoined to P to obtain $C\left[\lambda y / x, u\left(\frac{R}{1}\right)\right]$ are
easentially the same as those winch wust be ajoined to obtain $C\left[\lambda u f x . u\left(R_{2}\right)\right]:$ honever the rules of procedure rhich heve to be applied before these exions can be witten dom will in general be got te different in the tro cases. Conseruentiy (3.1) pad (9.2) wi21 be guite different axions, and there is no reason to expect their consequences to be the sage. A proper underatending of this oill make our treatment of question (b) much more intelligible. Ses also Sootnote .

Now let us turn to Λ_{T}. This ordinal logic is inviriant. supnose \underline{Q}, Q^{\prime} represent the sane ordinal, and supyose me ave a proof of a number theoretic theorem G in $P_{\text {으 . The formula }}$ expressing the number theoretic theorem does not involve any odd types. Now there is a one-one correspondence betreen the odd types such that if $2 m-1$ corresponds to $2 m^{\prime}-1$ and $2 n-1$ to $2 n^{\prime}-1$ then $\underline{Q}(\underline{m}, \underline{n})$ conv 2 implies $\underline{Q}^{\prime}\left(\mathrm{m}^{\prime}, n^{\prime}\right)$ conv 2. Let us modify the odd type-zubscripts occurring in the proof of G, replactrig each by its aste in the one-one correspondence. There results a proof in ${ }^{\prime} \underline{\Omega}^{\prime}$ with the same end formula G. That is to ary thet if G is provable in ${ }^{p} n$ it is provable in $P_{\Omega^{\prime}}: \Lambda_{T}$ is invariant.

The cuastion (b) must be answered negatively. Such more can be proved, but we shall first prove an even peaicer result which can be esteblished very quicicly, in orier to illustrate the method.

I shall prove thet an ordinal logic 1 cenot be invariant and have the property that the extent of $\underline{\Lambda}(\underline{\Omega})$ is a strictly increasing
function of the ordinal represented $b_{j} \underline{Q}$. Suppose 1 ans these properties; se shall obtain contradiction. Dst A be a F.F.F. in normal form and without free verieblos, and consider the process of carrying out conversions on $\boldsymbol{A}(1)$ until we have show it convertible to 2, tron converting $A(2)$ to 4 , then $17(3)$ and so on z suppose that after r steps we are $3 t i l l$ performing the conversion on $A\left(m_{r}\right)$. There is a formula \sqrt{h} such that $\sqrt{h}(\underline{A}, r)$ cony m_{r} for each positive integer r Non let Z be formula such that for each positive integer $h, Z(\underline{n})$ is on ordinal Formula representing ω^{W}, and suppose B is z member or the extent of $1(\sin -(\operatorname{tim}(Z)))$ but not of the extent of $A(\operatorname{dim}(Z))$ - Put

$$
K^{*} \rightarrow \lambda a \cdot \bar{\Lambda}(\operatorname{sic}(\sin (\lambda r . z(J h(\varepsilon, r))), \underline{B})
$$

then K^{*} is a complete lotic. For if G is dual, then
$\operatorname{Suc}(\operatorname{Lin}(\lambda r . Z(\vec{N}(\underline{A}, r)))) \quad$ represents the ordinal
$\omega^{\omega}+1$, and therefore $K^{*}(\underline{A})$ cont 2; but in $A(\underline{U})$ is not convertible to 2, then $\operatorname{Suc}(\operatorname{Lim}(\lambda r . Z(J h(A, r)))$ represents en ordinal not exceeding $\omega^{u}+I$, and $K^{*}(A)$ is therefore not convertible to 2 . Since there are no complete logic formulae this proves our assertion.

Fe may now prove more powerful resists.
Incompleteness theorems. (A) If en ordinal logic A1 is invariant up to an ordinal α, then for and ordinal formula Q representing an ordinal $\beta, \beta<\alpha$, the extent of $\underline{Q}(\underline{Q})$ is contained in the (set-theoretic) sum of the extents of the logics $\Delta(P)$ where P is finite.
(B) If an ordinal logic Λ ia $C-E$ invariant up to an ordinal α, then for any $C-\mathbb{K}$ ordinal formal \hat{A} representing an ordinal β, $\beta<\alpha$, the extent of $\underline{\Lambda}(H(\underline{A}))$ is contained in the (set-theoretic) sum of the extents of the logics $\Lambda(M(E))$ where F is a G-K ordinal formula representing an ordinal less then ω^{2}.

Proof of (A). It suffices to prove that if O represents an ordinal $\gamma, \omega \leqslant \gamma<\alpha$, then the extent of $\underline{\Lambda}(\underline{\Omega})$ is contained in the set theoretic sum of the extents of the logics $\Lambda\left(Q^{\prime}\right)$ where Q^{\prime} represents an ordinal less than γ. The ordinal γ must be of the form $\gamma_{0}+\rho$ where e is finite and represented by P easy, and γ_{0} is not the successor of any ordinal and is not leas than ω. There are two cases to consider: $\gamma_{0}=\omega$ and $\gamma_{0} \geqslant 2 \omega$. In each of them we shall obtain a contradiction frae the assumption that there is a F.F.F. B such that $\underline{1}(\underline{Q}, \underline{B})$ con 2 whenever $\underline{\underline{I}}$ represent e γ, but is not convertible to 2 if $\underline{\underline{Q}}$ represents a smaller ordinal. Lat us take first the case $\gamma_{0} \geqslant 2 \omega$. Suppose $\gamma_{0}=\omega+\gamma_{1}$, and that \underline{Q}_{1} ia an ordinal formula representing γ_{1}. Let \underline{f} be any F.F.F. with $^{\text {F }}$ a normal form and no free variables, and let Z be the class of those positive integers which are exceeded by all integers n for which $A(h)$ is not convertible to R. Let E be the class of integer e $2 p$ such that $Q(P, 4)$ con 2 for some/ belonging to Z. The class E, together with the class φ of all oi integers is constructively enumerable. It is evident that the class can be emueretad with repetitions, and since it is infinite the required enumeration can be obtained by striking out the repetitions. There is, therefore, a formula such that $E w(\underline{\Omega}, A, r)$ Fins through the formulae of the class $E+Q$ without repetitions as r runs through the positive integers. We define
$R t \rightarrow \lambda w a m n \cdot \operatorname{Sum}(D t, w, E n(w, a, m), E n(w, a, n))$
Then $\operatorname{Rt}(\underline{\text { Q }}$, ($)$ is an ordinal formula which represents γ_{0} if A is dual, but a smaller ordinal otherwise. In fact
$\operatorname{Rt}\left(\underline{\Omega}_{1}, \underline{A}, \underline{m}, \underline{n}\right) \operatorname{conv}\left\{\operatorname{Sum}\left(D r, \Omega_{1}\right)\right\}\left(E n\left(\underline{Q_{1}}, \underline{A}, \underline{m}\right), \hat{\operatorname{Lu}}\left(\Omega_{1}, \underline{A}, \underline{n}\right)\right)$
Now if \underline{A} is dual $E+\varphi$ includes all integers m for which $\left\{\operatorname{Sum}\left(D r, \underline{\underline{Q}_{1}}\right)\right\}(\underline{m}, m)$ con. Putting " $E_{n}(\underline{\underline{Q}} 1, \underline{A}, P)$ cony $q^{\prime \prime}$ for $M(p, q)$ we see that condition (7.4) is satisfied, oo that $\operatorname{Rt}\left(\underline{N}_{1}, A\right)$ is an ordinal formula representing γ_{0}. But if A is not dual the set $\hat{E}+\psi$ consist i of all integers m for which $\left\{\operatorname{Sum}\left(D t, Q_{1}\right)\right\}(\underline{m}, r)$ conv 2 , where r depends only on A. In this case $\mathbb{T}\left(\Omega_{1}, A\right)$ is an ordinal formula representing the same ordinal as $\ln f\left(\operatorname{sum}\left(D r, \frac{O}{2}\right), r\right)$, and this is smaller than γ_{0} - Nom consider K :

$$
K \rightarrow \lambda_{1}, \Lambda\left(\operatorname{Sun}\left(\operatorname{Rt}\left(\underline{Q}_{1}, \underline{A}\right), \underline{P}\right), \underline{B}\right)
$$

If \underline{A} is dual, $\underline{K}(\underline{\theta})$ is convertible to R, since $\operatorname{Sum}(R+(\underline{Q}, \underline{A}), \underline{P})$ represents γ. But if \nsubseteq is not dual it is not convertible to 2 , for $\sqrt{ }$ um $(\mathbb{R} t(\underline{Q}, \underline{A}), \underline{P})$ then represents an ordinal smaller than γ. In $/ 亻$ wo therefore have complete logic formula, which is impossible.

Now we taine the case $\gamma_{0}=\omega$. We introduce a M.F.F. Mg such that if W is the D.N. of a computing machine otb, and if by the m th complete configuration of th the figure 0 has been printed then $\operatorname{Mg}(n, m)$ is convertible to $\lambda p q \cdot A l(4(p, 2 p+2 q), 3,4)$ (which is an ordinal formula representing the ordinal 1), but if 0 has not been printed it is convertible to $\lambda p q, p(q, I, 4)$
(vinich represents 0). How consider M.

$$
M \rightarrow \lambda_{n}, \underline{1}(\operatorname{Sum}(\operatorname{dim}(\operatorname{Mg}(n)), \underline{P}), \underline{B})
$$

If the machine never prints 0 then $\operatorname{sim}\left(\lambda r . M_{g}(n, r)\right.$) represents ω and $\operatorname{Sam}\left(\operatorname{dim}\left(M_{g}(\underline{n})\right), \underline{p}\right)$ represents γ. This means that $M g(\underline{n})$ is convertible to 2. If, however ell ever prints $0, \operatorname{Sum}(\operatorname{dim}(M g(n)), P)$ represents a finite ordinal and $M(\underline{M})$ is not convertible to 2. In M we therefore have a means of determining of a machine whether it ever prints 0 , which is impossible ${ }^{22}$. (Turing [1], \& 8). This con-2^{-}This part of the argument can equally well be based on the impossibility of determining of two W.F. whether they are interconvertible. (Church [3], 563.) pletes the proof of (1).

Proof of (B). It suffices to prove that if C represents an ordinal $\gamma, \omega^{2} \leqslant \gamma<\alpha$ then the extent of $\triangle(H(S))$ is included in the set-theoretic sum of the extents of $\underline{\perp}(H(G))$ where G represents an ordinal less than γ. We obtain a contradiction from the assumption that there is a formula B which is in the extent of $\triangle(H(G))$ if G represents γ, but not if it represente any smaller ordinal. The ordinal γ is of the form $\int+\omega^{2}+\xi$ where $\xi<\omega^{2}$. Let \mathcal{D} be a C-K ordinal formula representing δ and \mathcal{Y} one representing ξ.

Fo now define a formula $H g$. Suppose A is a F.F.F. in normal form and without free variables; consider the process of carrying out conversions on $A(7)$ until it is brought into the form 2, then converting $\underline{A}(2)$ to 2 , then $\underline{A}(3)$, and so on. Suppose that at the r th step of this process we are doing the n_{r} th
step in the conversion of $\underline{A}\left(m_{v}\right)$. Thus for instance if $\underline{A}(3)$ be not convertible to 2 , m_{r} can never exceed 3. Then $H_{g}(G, r)$ is to be convertible to $\lambda_{f} \cdot f\left(m_{r}, k_{r}\right)$ for each positive integer
r. Put

$$
\begin{aligned}
& s_{q} \rightarrow \lambda d m n . u\left(\text { Suc, } m \left(\lambda a u f x \cdot u\left(\lambda y \cdot y\left(S_{u c}, a, u, f, x\right), d(u, f, x)\right)\right.\right. \\
& M \rightarrow \lambda a u f x \cdot Q\left(u, f, u\left(\lambda y, \operatorname{Hg}\left(a, y, S_{q}(D)\right)\right)\right) \\
& \underline{K}_{1} \rightarrow \lambda a . \underline{(M(a), \underline{B})}
\end{aligned}
$$

then I say that K_{1} is a complete logic formula. $S_{\mathcal{q}}(\underline{\mathcal{D}}, \underline{m}, \underline{n})$ is a $C-K$ ordinal formula representing $S+m \Delta+h$, and therefore $\operatorname{Hg}\left(\underline{\theta}, \underline{r}, \int_{q}(\underline{D})\right)$ represents an ordinal J_{r} wifi: increases steadily with increasing r, and tends to the limit $\delta+\omega^{2}$ if A is dual. Further $\operatorname{Hg}\left(\underline{A}, r, S_{q}(D)\right)<H_{g}\left(\underline{A}, S(r), S_{q}(D)\right)$ for each positive integer r. $\lambda u f x . u\left(\lambda y . \operatorname{Hg}\left(\underline{A}, y, S_{q}(D)\right)\right.$ is therefore a $C-\frac{X}{\text { ordinal formula and represents the init of the }}$ sequence $J_{1}, J_{2}, J_{3} \ldots$ This is $\delta+\omega^{2}$ if \underline{A} is dual, but a sailer ordinal otherwise. Likewise $M(A)$ represents γ if A is dual, but a sailer ordinal otherwise. The formula B therefore belongs to the extent of $\underline{\wedge}(H(\underline{M}(\underline{A})))$ if and only if \underline{A} is dual, and this implies that K_{1} is a complete logic formula as mas asserted. But this is impossible and we have the required contradiction.

As a corollary to (A) we see that $\Lambda_{\neq 1}$ is incomplete and in fact that the extent of $\Lambda_{H}(D t)$ contains the extent of $\Lambda_{H}(\underline{Q})$ for any ordinal formula Q. This result, suggested to me
first by the solution of question (b), may also be obtained more directly. In fact if a number theoretic theorem can be proved in any particular $P_{\text {O }}$ it can be proved in $P_{\lambda m n} m(4, I, 4)$. The formulal describing momber theoretic theorems in P do no involve more than a finite number of types, type 5 being the highest necessary. The formulae describine the muber theoretic theorems in any P g will be obtained by doubling the type subscripts. Now suppose we have a proof of a number theoretic theorem G in ${ }^{P}$ 응 and that the types occurring in the proof are among $0,2,4,6,8,10, t_{1}, t_{2}, t_{3}, \ldots t_{R}$. Fe may suppose they have been arranged with all the even types preceding all the odd types, the even types in order of magnitude and the type $2 m-1$ preceding $2 n-1$ if $\underline{Q}(\underline{m}, \underline{n})$ conv 2. Now let each t_{r} be replaced by $10+2 r$ throughout the proof of G. Fe obtain a proof of G in $P \lambda m n . m(4, E, 4)^{\circ}$

As with proclem (a) the solution of problem (b) does not recuire the use of high ordinals (e.g. If we make the assumption that the extont of $\underline{\Lambda}(\underline{Q})$ is a steadily increasing function of the ordinal represented by O we do not have to consider ordinals higher than $\boldsymbol{\omega}+2$). However, if me restrict what we are to call ordinal formulae in some way shall have corresponding modified problems (a) and (b); the solutions will presumably be essentially the same but will involve higher ordinals. Supoose for example that Prod is a W.F.F. witi the property that $\operatorname{Prod}\left(\underline{Q}, \underline{Q}_{2}\right)$ is an ordinal formula representing $\alpha_{1} \alpha_{2}$ when $\underline{\underline{R}}_{1}, \underline{Q}_{2}$ are ordinal formulae representing α_{1}, α_{2} respectively and suppose we call a F.F.F. a

I－ordinal formula when it is convertible to the form Sum（Prod（ $Q, D t$ ），P ） where P ，P are ordinal formulae of mich P represents a finite ordinal．We may define l－ordinal lagics，1－completerese and 1－Inverlance in an obvious way，and obtain a solution of problem（b） Which differs from the solution in the ordinary case in that the ordinals less then ω take the place of the finite ordinals．． generally the cases I have in mind will be covered by the collaring theorem．

Suppose we have a class ∇ of formula representing ordinals in
some manner we co not propose to specify definitely，and a subset 23 J

The subset U molly supersedes V in what follows．The introduction of serves to emphasise the fact that the sot of orizaba represented by members of if fiat have gaps． of the class \bar{y} such that．
（i）mere is a formula $\overline{\underline{\phi}}$ mach the if T emuarstes a sequence of armours of ti representing an increasing sequence of oransis，timon $\Phi(I)$ is a member of U representing the lizati of the sequence．
（ii）were te a formula E such that $E(\underline{m}, n)$ is member of U for each pair of positive integers m ，n and in in represents $\varepsilon_{m, n}$ then $\varepsilon_{m, n}<\varepsilon_{m^{\prime}, n^{\prime}}$ 说 either $m<m^{\prime}$ or $m=m^{\prime}, 4<n^{\prime}$ （111）There is a formula G such that $1 \pm \underline{A}$ Is a member o：f then $G(\underline{A})$ is a member of v representing a larger ordinal than does A，and such that $\underline{G}(E(\underline{m}, \underline{n}))$ always meoresenta an ordinal not larger $\operatorname{thsin} \varepsilon_{m, n+1}$ ：

We define a Vordinal logic to be a F．F．F．Λ such that $\Delta(A)$ is a logic whenever A belongs to V is V－Invariant if the extent
of $\triangle(A)$ depends only on the ordinal represented by \underline{A}. Then it is not possible for a V-ordinal logic Λ to be V-invariant and have the property that if C_{1} represents a greater ordinal than C_{2}. (C_{1} and S_{2} beth being members of 0) then the extent of $\Lambda\left(C_{1}\right)$ is greater than the extent of $\Lambda\left(C_{2}\right)$.

We suppose the contrary. Let \underline{B} be formula belonging to the extent of $\underline{\perp}(\underline{G}(\underline{\Phi}(\lambda r . \underline{E}(r, 1))))$ but not to the extent of $\perp(\underline{\Phi}(\lambda r . E(r, I))$ supposethat our assertion is false and that

$$
\underline{K}^{\prime} \rightarrow \lambda a \cdot \underline{\Lambda}(\underline{\Theta}(\lambda r \cdot \operatorname{Hg}(a, r, \underline{E})), \underline{B})
$$

Then K^{\prime} is a complete logic. For

$$
\operatorname{Hg}\left(A, r, E^{n}\right) \quad \text { con } E\left(m_{r}, \underline{u}_{r}\right)
$$

$E\left(\underline{m}_{r}, y_{r}\right)$ is a sequence of V-ordinal formulae representing an increasing sequence of ordinals. Their limit is represented by $\Theta(\lambda r \cdot \operatorname{Hg}(A, r, \underline{E})$; let us seewthat this limit is. First suppose \underline{A} is dual: then m_{r} tends to infinity as r tends to infinity, and $\Theta\left(\lambda r . H_{g}(\underline{A}, r, \underline{E})\right)$ therefore represents the same ordinal as $\Theta(\lambda r . E(r, 1))$. In this case we must have $K^{\prime}(\underline{A})$ con 2. Now suppose \underline{A} is not dual: m_{r} is eventually equal to some constant number, a say, and $\Theta(\lambda r \cdot \operatorname{Hg}(A, r, E))$ represents the same ordinal as $\Theta(\lambda r . \underline{E}(\underline{a}, r))$ which is smaller than that represented by $\Theta(\lambda r . E(r, 1))$. B cannot therefore belong to the extent of $\Theta\left(\lambda r . H_{g}(\underline{A}, r, \underline{E})\right.$, and $K(\underline{A})$ is not convertible to 2. Fe have proved that K^{\prime} is a complete logic which is impossible.

This theorew can no doubt be improved in many ways. However, it is sufficiently general to show that, with almost any reasonable notation for ordinals, completeness is incompatible mith inveriance.

We can still give a certain mexning to the classification into depths with highly restricted kinds of ordinals. Suppose we tace a particular ordinal logic 1 and a particular ordinal formula Ir representing the ordinal \mathcal{X} say (preferably a large one), and we restrict ourselves to ordinal formalae of the form $\ln (\mathbb{F}, a)$. Fe shall then have a classification into depths, but the extents of all the lagics we so obtain Fill be contained in the extent of a single logic.

Fe now attempt a problen of a rather different character, that of the completeness of Λ_{P}. It is to be expected that this ordinal logic is complete. I cannot at present sive a proof of this, but I can give a proof that it is complete as rezards a simpler type of theorem than the number theoretic theorems viz. those of form ' $\theta(x)$ vanishes identically' where $\theta(x)$ is priaitive recursive. The proof will have to be much ebbreviated as we do not wish to go into the formal details of the systen ?. Also there is a certain lack of definiteness in the problen as at present stated, owing to the fact that the formulae G, E, M_{P} were not completely defined. Our attitude here is that it is open to the sceptical reader to give detailed definitions for these formulae and then verify that the remaining details of the proof can be filled in using his definition. It is not asserted that these details can be filled in whatever be the definitions of G, \hat{E}, M_{P} consistent with the properties
alsady requirec of the:, only the it is so with the more natural deinitions.

I sumil prove tho complotenoss theorea in the folloring form. $i_{1} \mathcal{A}\left[x_{0}\right]$ in a recursion formale and $\mathscr{C}[0]$, $\mathscr{d}[f 0]$, . are all provable in 3 , then there 1 a $\mathcal{C - A}$ rdinol fommis if such thit $\left(x_{0}\right) \mathscr{H}\left[x_{0}\right]$ is provable in
 ns axioms all formule those $G . R$ are of the form

$$
\underline{A}\left(\lambda m n . m(G(2, u), \theta(3, u)), K, M_{P}, r\right)
$$

(provided they rasere roontiono)
Firet let us derine the formule \underline{A}. un pose \underline{D} is W.F.I. Ith the property thet $D(\underline{u})$ conv if $\int \in\left[f^{(n-1)} 0\right]$ is rovable in but $D(y)$ conv 1 if $\sim \mathcal{S}\left[f^{(n-1)} 0\right]$ is provable in Z (T) is being as umod consistont). Lot Θ be denined by

$$
\Theta \rightarrow\{\lambda v u \cdot v(v(v, u))\}(d v u \cdot v(v(v, u)))
$$

anc let V be formula with tho provertios

$$
V(2) \text { corv } \lambda u . u(\text { Suc, } U)
$$

$V(1)$ conv $\lambda u . u(I, \Theta(\operatorname{Suc}))$

The evistence of such formie is estnblished in leene 1 , corollary on p 220. ISo put

$$
\begin{aligned}
& \underline{A}^{*} \rightarrow \lambda u f^{*} x \cdot u(\lambda y \cdot V(\underline{D}(y), y, u, \gamma, x) \\
& A \rightarrow \operatorname{Suc}\left(\underline{A}^{*}\right)
\end{aligned}
$$

I ascert that \underline{A}^{*}, \underline{A} are $C-K$ orinal fom ulae whenever it is true thrit $\mathcal{G}[0], \mathcal{L}[f 0]$, . . are all proveble in P. For in this cesse \underline{A}^{*} is λ uf x. u (R) where

$$
\underline{R} \rightarrow \lambda y . \quad V(\underline{D}(y), y, u, f, x)
$$

and thon

$$
\begin{aligned}
\lambda u f x . \underline{R}(\underline{u}) \text { conv } \lambda u f x . V(D(\underline{n}), \underline{n}, u, f, x) \\
\text { conv } \lambda u f x . V(2, \underline{n}, u, f, x) \\
\text { conv } \lambda u f x .\{\lambda u . u(\operatorname{suc}, U)\}(\underline{n}, u, f, x)
\end{aligned}
$$

conv $\lambda_{u f} x . \underline{n}\left(S_{u}, U_{u}, f, x\right)$ which is a
$\mathrm{C}-\mathrm{A}$ ordinal formula, and
$\lambda u f x . S(\underline{u}, \operatorname{Suc}, U, u, f, x)$ conv $\operatorname{Suc}(\lambda u f x . \underline{u}(\operatorname{Suc}, U, u, f, x)$
the e rel tions hold for an arbitrery positive intefer n and therefore F^{*} is a $C-$ ordinal formula (condition (0) p. 32): i follo farediculy thet A is also a $C-K$ ordinal formula. It remains to prove thet $\left(x_{0}\right) \mathscr{L}\left[x_{0}\right]$ is provablo in \sum^{4} - To do visis it is nceescery to examino the structure of \underline{A}^{*} in the caso that $\left(x_{0}\right) \mathscr{L}\left[x_{0}\right]$ is false. wet us suppose thet $\mathcal{U}\left[f^{(a-1)} 0\right]$ is wue so th $t \quad D(\underline{a})$ conv 2, anc let us considea \underline{B} nere

$$
\underline{B} \rightarrow \lambda u f x \cdot V(\underline{D}(\underline{a}), a, u, f, x)
$$

If \underline{A}^{*} vare a-s ordinel formula then \underline{B} ould be a
monber of its indawentol squence; ut

$$
\begin{align*}
& \underline{B} \quad \text { conv } \lambda u f x: V(I, \underline{a}, u, f, x) \\
& \text { conv } \lambda u f x .\{\lambda u . n(I, \Theta(\operatorname{suc}))\}(\underline{a}, u, f, x) \\
& \text { conv } \lambda u f x \cdot \Theta(\operatorname{Suc}, u, f, x) \\
& \text { conv } \lambda u f x .\{\lambda u \cdot u(\Theta(u))\}(\operatorname{Suc}, u, f, x) \\
& \text { conv } \operatorname{\lambda uf} x . \operatorname{Suc}(\Theta(\operatorname{Suc}), u, f, x) \\
& \operatorname{conv} \operatorname{Suc}(\lambda u f x . \Theta(\operatorname{Suc}, u, f, x)) \\
& \operatorname{conv} \operatorname{Suc}(\underline{B}) \tag{9.3}
\end{align*}
$$

Th 3 of course fiplies th: $B<B$ and thererore hat B is no C-I ordinal formule. This, although fundamental to the oscibility of proving our completenes theorem coos not form an actual stop in tha orsument. foughly gnosizing our crevent will anount to this. The relation (9.3) imples the the syote: P B is inconsistent and therofore th $t=\underline{A}^{*}$ is inconsictent, and inde a wo can prove in \bar{F} (and e fortions in F^{*}) thet $\sim\left(x_{0}\right) d o\left[x_{0}\right]$ implie the inconsiatency of \mathbb{A}^{*}. On the other hand in P - we cen prye the consist ney of \underline{P}^{*}. The inconsistancy of \bar{B} is yroved by the godol crevent. -ot us retun to the detaile.

$$
\underline{B}\left(\operatorname{\lambda mn} \cdot m(\nabla(2, n), \pi(3, n)), k, M_{p}, r\right)
$$

Replacing \underline{B} by $\operatorname{Suc}(\underline{B})$ this becomes

$$
\begin{aligned}
& \operatorname{Suc}\left(B, \lambda m n \cdot m(\theta(2, n), \theta(3, n)), K, M_{p}, r\right) \\
& \operatorname{conv} K\left(\underline{B}\left(\lambda \operatorname{mn} . m(\theta(2, n), \theta(3, n)), K_{1}, M_{p}, r\right)\right.
\end{aligned}
$$

$$
\text { comr } B\left(\lambda m n . m(A(2, n), D(3,4)), K_{1}, M_{p}, r\right)
$$

$$
\text { if } r \text { con } 2 p+1
$$

cons $E\left(\underline{B}\left(\operatorname{rimn} . m(D(2, n), \nabla(3, n)), K_{1}, M_{p}\right), \underline{P}\right)$
if r cons $2 p$
When we comber the essential property of the formula F we ce that the axious of P B include all formulas of the form

$$
\left(\exists x_{0}\right) \log _{p} \leq\left[x_{0}, f^{(\eta)_{0}}\right] \rightarrow f
$$

where q is tho $G .2$ of the formic f
Let b be tho 0 of the formula M.

$$
\begin{equation*}
\sim\left(\exists y_{0}\right)\left(\forall x_{0}\right)\left\{P_{\log }^{p B} \text { }\left[x_{0}, y_{0}\right] \cdot s 6\left[z_{0}, z_{0}, y_{0}\right]\right\} \tag{v}
\end{equation*}
$$

$S_{b}\left[x_{0}, y_{0}, z_{0}\right]$ is a particular recursion formula sucia the
Sb $\left[f^{(l)} 0, f^{(m)} 0, f^{(n)} 0\right]$ holds if n^{2} only if n is the Gi. of the re ult of substituting $f^{(m)} 0$ for z_{0} in the formula whose Gook. is ℓ et ali points hero z_{0} is free. Let T be the $v . \cdots$. of the formula \mathcal{L}.

$$
\sim\left(\exists y_{0}\right)\left(\exists x_{0}\right)\left\{\operatorname{Troof}_{p}\left[x_{0}, y_{0}\right] \cdot \operatorname{sb}\left[f^{(b)} 0, f^{(b)} 0, y_{0}\right]\right\}
$$

Then wo hive an anion in P^{B}

$$
\left(\exists x_{0}\right) P \operatorname{wog}_{P B}\left[x_{0}, f^{(P)} 0\right] \supset \alpha
$$

and to en move in P

$$
\begin{equation*}
\left(x_{0}\right) \text { sb }\left[f^{(b)} 0, f^{(b)} 0, x_{0}\right] \perp x_{0}=f^{(p)} 0 \tag{9.4}
\end{equation*}
$$

since \mathcal{L} is tho result of substituting; $f^{(b)} O$ for Z_{0} in
O2: whence

$$
\begin{equation*}
\sim\left(\exists y_{0}\right) P_{\operatorname{wof}}^{p} 1 \mathrm{~B}\left[y_{0}, f^{(p)} 0\right] \tag{9.5}
\end{equation*}
$$

 be roved in $卫 \underline{B}$. But if we on rove \mathcal{L} in Q then o cen rove its provability in 3 , the proof being in Pile. wo en rove

$$
\left(\exists x_{0}\right) \operatorname{lur}_{p} \mathrm{p}_{\mathrm{g}}\left[x_{0}, f^{(p)} 0\right]
$$

in $=$ (since p is the G... of \mathcal{L}). But this contradicts (9.5), so whet if $\sim \mathscr{L}\left[f^{(a-1)} 0\right]$ i ane e con rove a contradiction in P^{B} or in $二 A^{*}$. Now a oct th t the thole argent u to this olin aces be 0 reed through Pommaly in the system \because in fact th t if C be the G.R. of $\sim(O=O)$ then

$$
\begin{equation*}
\sim\left(a_{0}\right) d \sigma\left[a_{0}\right] \supset\left(\exists v_{0}\right) \operatorname{Two}_{p} f_{T} \underline{\theta}^{*}\left[v_{0}, f^{(c)} 0\right] \tag{9.6}
\end{equation*}
$$ is provable in 3 . fail not attempt to give any mors. detailed proof of this assertion.

The formula

$$
\begin{equation*}
\left(\exists x_{0}\right) P_{\operatorname{woof}}^{P} A^{*}\left[x_{0}, f^{(c)} 0\right] \supset \sim(0=0) \tag{9.7}
\end{equation*}
$$

is an axiom in P ㅂ. Combining (9.6), (9.7) wo obtain $\left(x_{0}\right) \sqrt{d}\left[x_{0}\right]$ in P.

This completeness theorem as usual is of no wive. Although it shows for instance that it is possible to prove Fermat's last theorem with. Λ_{p} (if it is true) yet the truth of the theorem would real y be assumed by taking a certain formula es an ordinal formal.

That Λ_{p} is not invariant may be proved easily by our genera 1 theorem; alternatively if follows from the fact the in proving our partial completeness theorem we nev or used ordinals higher than $\omega+1$. This fact can also be used to prove che Λ_{p} is not coir invariant up to $\omega+2$.

10. The continuua hypothesis. A digression

The methods of $\mathcal{Z} 9 \mathrm{may}$ be aplied to problens which ace constructive anelogues of the continum hypothests problem, The continuum hypothesis asserts that $2^{N_{0}}=N_{1}$, in other words that if ω_{1} is the smallest ordinal α greater than ω such that a series with order type \mathcal{Q} cannot be put into one-one correspondence with the positive integers, then the ordinals less than ω_{1} can be pat into one-one correspondence with the subsets of the positive integers. To obtain a constructive analogue of this proposition we may replace the ordinaly less than ω_{1} ether by tine ordinal formalae, or by the orinals represented by them; we may replace the subsets of the positive integers either by the computable sequences of figures 0,1 or $b y$ the description numbers of the nachines wintin coapute these sequences. In the manner in which the correspondence is to be set up there is also more than one possibility. Thus even when we use only one kind of ordinal formula there is still great ambiguity as to miat the constructive analogue of the continuua hypothesis should be. I shell prove a single result in this convection ${ }^{23}$. A number
23 A suggestion to consider this problem cane to me indirectiy from

A suggestion to consider this problem came to me indirectly from F. Bernstein. A related problem was suggested by P. Bernays. -- of others may be proved in the same way.

We ask 'Is it possible t find a computable function of ordinal formulae determining a one-one correspondence betreen the ordinals represented by ordinal formulae and the computable sequences of fisures 0,1 '' . More accurately $^{\prime}$ Is there a formula F such that if \underline{Q} is an ordinal formula and h a positive integer then $\underline{f}(\underline{\Omega}, \underline{n})$
is convertible to 1 or to 2 , and such that $F(\underline{Q}, \underline{n})$ con $E(\underline{Q}, \underline{n})$, for each positive integer n, if and only if Ω and \underline{Q}^{\prime} represent the same ordinal?'. The answer is 'No', as will be seen to follow from this: there is no formula F such that $E(\underline{O})$ enumerates a certain sequence of integers (each being 1 or 2) when \underline{Q} represents ω and enumerates another sequence when $\xlongequal[2]{ }$ represents 0 . If there is such an \underline{F} then there is an a such that $\mathcal{F}(\underline{Q}, \underline{a})$ con $\underline{E}(D t, \underline{a})$ if \underline{O} represents ω but $E(\underline{Q}, a)$ and $E\left(P \frac{P}{2}, a\right)$ are convertible to different integers (1 or 2) if Ω represents 0 . To obtain a contradiction from this we introduce a R.F.F. Gm not unlike Mg. If the machine c 价 whose D.N. is a has printed O by the time the m th complete configuration is reached then $G_{m}(\underline{a}, \underline{m})$ cons $\lambda m n . m(n, I, 4) \quad$ otherwise $\operatorname{Gm}(\underline{u}, \underline{w})$ con Aeq. $A l(4(P, 2 p+2 q), 34)$. Now consider $F(D r, a)$ and $E(\operatorname{dim}(\operatorname{Gm}(n)), a)$ If $e l l_{\text {never prints } 0} \operatorname{dim}(\operatorname{Gm}(\underline{n}))$ represents the ordinal ω. Otherwise it represents 0 . Consequently these two formulae are convertible to one another if and only if elf never prints 0 . This gives us a means of telling of any machine whether it ever prints 0 , winch is impossible.

Results of this kind have of course no real relevance for the classical continuum hypothesis.

11. The purpe of ordinal logies,

Mathematical reasontng may be regarded rather schematically as the exercise of a combination of two iaculties ${ }^{24}$, which we may call
 distinguishes topics of interest from othersg in fact me are regarding the function of the mathematician as simply to determine the truth of falsity of propositions. whicil me may call Intultion and ingenuity. The activity of the intuition consists in maing spontaneous judgments which are not the result of conscious trains of reasoning. These judgments are often, but br no neans invariably correct (leaving aside the question as to what is neant by 'correct'). Often it is possible to find some other way of verifying the correctness of an intuitive judgment. One may for instance judge that all positive integers are uniquely factorizable into primes; a detailed mathematical argment leads to the same result. It rill also involve intuitive judgrents, but they will be ones less open to criticism than the original judgaent about factorization. I shall not attempt to explain this idea of 'intuition' any more oxplicitly.

The exercise of ingenuity in mathematics consists in aiding the intultion through suitable arrangements of propositions, and prepaps geometical figures or drawings. It is intended that when these se really well arranged validity or the intuitive steps witich are required cannot seriously be doubted.

The parts played by these two faculties differ of course from occasion to occasion, and from matheratician to mathematician. This
arbitrariness can be removed by the introduction of formal locic. The necessity for using the intuition is then greatly reduced by setting down formal rules for carrying out inferences which are always intuitively valid. When working with a formal logic the idea of Ingenuity takes a more definite shape. In general a formal logic mill be framed so as to admit a considerable variety of possible steps in any stage in proof. Ingenuity will then determine which steps are the more profitable for the purpose of proving a particular proposition. In pre-Godel times it was thought by some thet it would probably be possible to carry this program to such a point that all the intuitive judgments of mathematics could be replaced by a finite number of these rules. The necessity for intuition would then be entirely elininated.

In our discussions, however, we have gane to the opposite extroce and eliminated not intuition but indenuity, and this in spite of the fact that our aim has been in much the same direction. Fe have been trying to see how far it is possible to climinate intuition, and leave only ingenuity. We do not mind how much ingenuity is required, and thereiore assume it to be available in unlimited supply. In our metamathematicel discussions we actually express this assumption rather differently. We are always able to obtain from the rules of a formal logic a method for enuerating the propositions proved by its means. Then imagine that all proofs take the form of searcin through this enumeration for the theorem for which a proof is desired. In this way ingenuity is replaced by patience. In these houristic discussions however, it is better not to aake this reduction.

Owing to the impossibility of finding a formal logic which wili wholly eliminate the necessity of using intuition we naturally tum to 'non-constructive' systems of logic with minch not all the steps In a proof are mechanical, some being intuitive. An example of a non-constmuctive logic is afforded by any ordinal logic. Wheh we have an ordinal logic we are in a position to prove number theoretic theorems by the intuitive steps of recogniaing formulae as ordinal formulae, and the mechanical steps of carrying out conversions. What properties do we desire a non-constructive logic to have if we are to make use of it for the expression of matheratical proofs? Fe mant it to be quite clear when a step makes use of intuition, and when it is purely formal. The strain put on the intuition should be a mininum. wost important of all, it must be beyond all reasonable doubt that the logic leads to correct results whenever the intuitive steps are correct ${ }^{25}$. It is also desirable that the logic be adequate

This requirement is very vague. It is not of course intended that the criterion of the correctness of the intuitive steps ibe the correctness of the final result. The meaning becones clearer if each Intuitive step be regarded as a judgment that a particular proposition is true. In the case of an ordinal logic it is elways a judgment that a formala is on ordinal formala, and this is equivalent to judging that a number theorotic proposition is true. In this case then the requirement is that the reputed ordinal logic be an ordinal logic. - for the expression of number theoretic theorems, in order that it any be used in metamathematical discussions (cf \mathcal{Z}).
of the particular ordinal lagics re have discussed Λ_{P} and Λ_{H} certainly will not satisfy us. In the case of Λ_{H} we are in no better position than with a constructive lozic. In the case of Λ_{T}
(and for that matter also Λ_{H}) we aro by no means certain that we shall never obtain any but true results, because we do not know whether all the number theoretic theorems provable in the systen P are true. To take Λ_{p} as a fundamental non-constructive Iogic for metamathematical arguments would be most unsound. There remaine the system of Church waich is free of these objections. It is probably complete (although this would not necessarily mean much) and it is beyond reasonable doubt that it alkays leads to correct results ${ }^{25}$.

This ordinal logic arises from a certain systen C in essentialiy the sase way as Λ_{p} arose from. P. By an argument similar to one occurring in $\delta 8$ we can show that the ordinal logic leads to correct results if and only if C_{0} is valid; the validity of C is proved in Church[1], making use of ${ }^{\circ}$ the results of Church and Rosser [1].
 In the next section I propose to describe another ordinal logic, of 2 very different type, which is suggested by the work of Gentzen, and which should also be adequate for the formalization of number theoretic theorems. In particular it stould be suitable for proofs of metamathematical theorems (cf $\}$).

12. Gentzen Eype ordinel kogics.

In proving the consistency of a certain syste: of formal logic Centzen (Gentzen [1]) has made use of the principle of transfinite Induction for ordinals less than ε_{0}, and sugeested that it is to be expected that transfinite induction carried sufficiently far would suffice to solve all probleas of consistency. Another suggestion to base systems of logic on transfinite induction has been made by Zermelo (Zermelo [1]). In this section I propose to show how this method of proof may be pat into the form of a formal (non-constructive) logic, and afterwards to obtain from it an ordinal logic.

Fe could express the Gentzen rethod of proof formally in tils way. Let us take the system P and adjoin to it an axioa $1 q_{0}$ nith the intuitive meanines that the F.F.F. \underline{O} is an ordinal formula, whenever weel certain that \underline{Q} is an ordinal formula. This is a non-constructive system of logic which may easily be pit into the form of an ordinal logic. By the method of $\mathcal{Z} 6$ we make correapond to the system of logic consisting of P with the axiom M_{0} adjoined a logic formula $L_{\underline{Q}}: L_{\underline{Q}}$ is an efrectively calculable function of \underline{O}, and there is therefore a formula Λ_{G}^{1} such that $\Lambda_{G}^{1}(\underline{Q})$ conv Q for each formila $Q \cdot \Lambda_{G}^{1}$ is certainly not on ordinal logic unleso P is valid, and therefore consistent. This formalization of centzen's idee would therefore not be applicable for the problem with which Genten himself was concerned, for he wes proving the consistency of a system weaker then P. However, there are other mays in shich the Gentzen method of proof can be formalized. I shall explain one,
beginning by describing a certain system of symbolic logic.
The symbols of the calculus are $f, x, 1,1,0, S$, $R, \Gamma, \Delta, E, 1,0,1,(), 1,$, and tho comma '.' We use capital German letters to stand for variable or undetermined sequences of these symbols.

It is to be understood that the relations that we are about to define hold only when compelled to do so by the conditions we lay down. The conditions should be taken together as a simultaneous inductive definition of all the relations involved.

Suffixes

$1^{\text {is a suffix. If }} \gamma^{\prime}$ is a suffix then γ_{1} is a suffix.

Indices

1 is an index. If G is an index then \mathcal{J}^{\prime} is m index.

Numerical variables

If γ^{\sim} is a suffix then $X \gamma^{\gamma}$ is a numerical variable.

Functional variables

If \mathcal{V} is a suffix and J is an index then $f \mathcal{F}$ is a functional variable of index J.

Arguments

(s) is an argument of index 1 . If (M) is an argument of index \mathscr{F} and \mathcal{F} is a term then $(N \nsubseteq)$ is an argument of index \mathcal{I}.

Mrmarala
0 is a numeral.
If \mathcal{Y}_{16} a numeral then $S(, N V)$ is a numeral.
In matamathematical statements we shall denote the numeral in which S occurs r times by $S^{(r)}(, O$,$) .$

Expressions of giver index
4 functional variable of index g is an expression of index g.
R, S are expressions of index 111,11 respectively.
If $\mathcal{V}_{\text {is a numeral then it is also an expression of index }}$
Suppose of 1 is an expression or index g, af one of index g^{\prime} and $\left\{\right.$ one of index $g^{\prime \prime \prime}{ }_{3}$ then $(\Gamma \mathcal{V})$ and $(\Delta \mathrm{O})$ are express-
 and $(y!g!x)$ are expression:: of index $g!$.

Function constanta
An expression of index g in which no functional variable occurs is a function constant of index g. If in addition R do not occur the expression is called a primitive function constant.

Terms
is a term.
Every numerical variable is a term.
II 17 is an expression of index I and (NL) is an argument
of index I then $O(M)$ is a term
Equations
If \mathcal{F}_{1} and \mathcal{F}_{2} are terse then $\mathscr{F}_{1}=\mathcal{F}_{2}$ is an equation.

Provable equations
We define what is meant by the provable equations relative to a given set of equations as axioms.
(a) The provable equations include all the axioms. The axioms are of the form of equations in which the syabole T, Δ, E, $1,0,!$ do not appear.
 argument of index \mathcal{G} then

$$
(\Gamma \text { gog })\left(v x_{1}, x_{11}\right)=\lg \left(\operatorname{m} x_{11}, x_{12}\right)
$$

is a provable equation.
(c) If $U G$ is an expression of index J^{\prime}, and (M) is an argument of index $\sqrt{ }$, then

$$
(\Delta u g)\left(v x_{1}\right)=v\left(, x_{1}, r\right)
$$

is a provable equation.
(a) If $O H$ is an expression of index g, and (M) is an argument of index $\sqrt{ }$, then

$$
(E v)\left(v x_{10}\right)=\operatorname{og}(c)
$$

is a provable equation.
(e) If 07 is an expression of index 9 and $b y$ is one of index I^{\prime}, and (N) is an argument of index $ף$, then

$$
(v g \mid h g)(v)=\lg (v g(v),)
$$

is a provable equation.
(f) If $M_{i s}$ an expression of index 1 then $~ V V()=,\gamma$ is a provable equation.
(g) If $V G$ is an expression of index 9 and Q ane of index $4^{\prime \prime \prime}$, and (M) an argument of index 9^{\prime}, then

$$
(\log \mathcal{O})(v 0,)=\operatorname{og}(v)
$$

and

$$
(\theta \theta \theta)\left(N S\left(, x_{1},\right)_{3}\right)=\theta\left(N x_{1}, S\left(x_{1,}\right),(\operatorname{god})\left(\theta x_{1}\right)\right)
$$

are provable equations. If in addition \mathscr{G} is an expression of index I^{l} and

$$
R\left(\lg \left(\operatorname{lr} S\left(, x_{12}\right),\right), x_{12}\right)=0
$$

is provable then

$$
(y!\theta!\operatorname{g})\left(\operatorname{cr} S\left(, x_{1},\right),\right)=\sigma\left(\operatorname{rgh}\left(\operatorname{cr} S\left(, x_{1}\right),\right), S\left(, x_{1},\right),\right.
$$

$$
\left.(g!a!g)\left(\operatorname{rg} \lg \left(\operatorname{m} S\left(x_{1},\right)_{2}\right),\right)_{2}\right)
$$

and
$(g!a!g)(v 0)=,g(v)$
are provable.
(h) if $\tilde{\mathscr{F}}_{1}=\mathcal{F}_{2}$ and $\mathcal{F}_{3}=\mathcal{F}_{4}$ are provable where $\tilde{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$, and \mathcal{F}_{4} are terms then $\mathcal{F}_{4}=\mathcal{F}_{3}$ and the result of substituting \mathcal{F}_{3} for \mathcal{F}_{4} at any particular occurrence in $\mathcal{F}_{1}=\mathcal{F}_{2}$ are provable equations.
(1) If $\mathcal{F}_{1}=\mathcal{F}_{2}$ is a provable equation then the result of substituting any term for a particular numerical variable throughout this equation is provable.
(1) suppose that g_{g}, \mathscr{V}_{1} are expressions of index g^{\prime}, that (M) is an argument of index 9 not containing the numerical variable $\mathcal{X} \mathcal{C}$ and that $\operatorname{OH}\left(M O_{3}\right)=\operatorname{lO}_{1}\left(M O_{J}\right)$ is provable. Also suppose that if we
 it can never be applied to the numerical variable d then

$$
g\left(\operatorname{crs}\left(x_{2},\right)\right)=g_{2}\left(a s(x,)_{2}\right)
$$

becomes a provable equation; in the hypothetical proof of this equation this rule (j) itself may be used provided that a different variable is chosen to take the part of \mathscr{C}.

Under these conditions $\mathscr{O}(M, \mathcal{L})=,\mathscr{O}_{1}(N \mathcal{O})$ is a proveble equation.
(k) Suppose that $O \mathscr{O}, \mathrm{O}_{1}, \mathrm{M}$ are expressions of index gl^{1}, that (N) is an argument of index g not containing the numerical
variable $X_{\text {and that }} y_{y}(O)=,g_{1}(N O)$ and $R\left(, \lg \left(\mathbb{N} S(, x,)_{3}\right), S(\mathcal{X},)_{1}\right)=0$ are provable equations. Suppose also that if we add

$$
\operatorname{og}(\operatorname{org}(\operatorname{cr} s(, x,)))=g_{1}(\operatorname{crg}(\operatorname{cr} s(, x,),)
$$

to the axioms, and again restrict (i) so as not to apply to ∂e then

$$
\begin{equation*}
o g\left(a x_{0}\right)=g_{1}\left(a x_{1}\right) \tag{12.1}
\end{equation*}
$$

becomes a provable equation; in the hypothetical proof cf (12.1) the rule (k) may be used if a different variable takes the part of \mathcal{X}. Under these conditions (1\%.I) is a provable equation.

We have now completed the definition of a provable equation reLative to given set of axioas. Next we shall show how to obtain an ordinal logic from this calculus. The first step is to get up a correspondence between some of the equations and number theoretic theorems, in other words to show how they can be interpreted as number theoretic theorems. Let $O /$ be a primitive function constant of index \| 07 describes a certain primitive recursive function $\varphi(m, n)$ determined by the condition that for all ha, hit equation
shall be provable without using the axioms (a). Suppose also that Is an expression of index 9 . Then to the equation

$$
\operatorname{go}\left(x_{1}, f\left(x_{1}\right),\right)=0
$$

we make correspond the number theoretic theorem which asserts that for nach natural number m there is a natural number n such that $\varphi(m, n)=0$. (The circumstances that there is more than one açation to represent each number theoretic theorera coult be avoided by a trivial modification of the calculus.)

Now let us suppose sowe definite method is chosen for describing the sets of axioms by means of positive integers, the mull set of axioas beine described by the integer 1. Dy an arguont used in $\mathcal{Z} \mathrm{E}$ there is a W.F.F. \sum auch that if r is the integer dascribing a set A or axioms then $\sum(\underline{r})$ is a logic formula enabling us to prove just those number theoretic theorems which are associated with oquations provable With the above described calculus, the axions being just those desm cribed by the number r.

I shall show two ways in which the conatmuction of the ordinal logic may be completed.

In the first mothod make use of the theory of general recursive function (Xleen [2]). Let us consider all equations of the form

$$
\begin{equation*}
R\left(, S^{(m)}(, 0,), S^{(n)}(, 0,),\right)=S^{(P)}(, 0,) \tag{12.2}
\end{equation*}
$$

wich are obtainable from the axioms by the use of rules (h), (i), It Is a consequance of the theoren of equivalence of λ-definable and general recursive function (Kieene [s]) that if $r(m, n)$ is any λ-definable function of two variables then we can choose the axioms so that (12.2) with $p=r(m, n)$ is obtainable in thia way for each
pair of natural numbers m, w, end no equation of the form

$$
\begin{equation*}
S^{(m)}(, 0,)=S^{(n)}(, 0,) \quad(m \neq n) \tag{12.3}
\end{equation*}
$$

is obtainable. In particular this is the case if $r(m, n)$ is dofined b_{z} the condition that

$$
\begin{aligned}
& \Omega(m, n) \text { cont } S(p) \quad p=r(m, n) \\
& r(0, n)=0 \text { all } n>0, \quad r(0,0)=2
\end{aligned}
$$

where Q is an ordinal formula. There is a method for obtaining the axioms given the ordinal formula, and consequently a formula Rec such that for any ordinal formula \underline{Q}, $\operatorname{Rec}(\underline{l})$ con m where m is the integer describing the set of axioms corresponding to \underline{Q}. Then the formula

$$
\Lambda_{G}^{2} \rightarrow \lambda w . \sum(\operatorname{Rc}(w))
$$

is an ordinal logic. Let us leave the proof of this aside for the present.

Our second ordinal logic is to be constructed by a method not unlike the one used in constructing Λ_{P}. Te begin by assigning ordinal formate to ell sets of axioms satisfying certain conditions. For this purpose we again consider that part of the calculus which is obtained by restricting 'expressions" to be functional variables or R or S and restricting the meaning of 'term' accordingly; the new provable equations are given by conditions (a); (h), (i), together with an extra condition (1)
1.
(1) The equation

$$
R\left(, 0, S\left(, x_{1}\right),\right)=0
$$

is provalio.
We coulee design a machine which would obtain all equations of the form (2R.2), with $m \neq n$, provable in this sense, and all of the Form (12.3), except that it would cease to obtain any pore equations when it had once obtained one of the latter contradictory' equations. From the description of the machine we obtain a formula Q such that
is obtained by the macisino

$$
\underline{\underline{O}}(m, n) \operatorname{conv} 1 \text { if } \quad R\left(, s^{(n-1)}(, 0,), s^{(m-1)}(, 0,),\right)=0
$$

is obtained by the machine

$$
Q\left(m, m_{1}\right) \text { con sands. }
$$

The formula - is an affectively calculable function of the set of axioms and therefore also of m consequently there is a forming M such that $M(\underline{m})$ cony Ω mine un describes the set of axioms. Now Lot (mu be formula such that if b is the G.R. of a formula $M(m)$ then (m (\underline{b}) cons w, but otherwise (m(b) conv 1. Let

$$
\Lambda_{G}^{3} \rightarrow \lambda_{w a} \rightarrow T\left(\lambda_{u}, \sum(\operatorname{Cm}(T n(\omega, u)), a)\right.
$$

Then $\Lambda_{G}^{3}(\underline{Q}, A)$ cony 2 if ana only if Ω cony $M(\underline{m})$ when m describes a set of axioms which, taicen with our calculus, suites
to prove the equation which is, rouging apeaking, equivalent to ' - is dual'. To prove that Λ_{G}^{3} is an ordinal logic it suffices to prove that the calculug with the axions described by me proves only true number theoretic theorems when $\underline{\underline{Q}}$ is an ordinal formula. This condition on m may also be expressed in this was let us put $m \ll w$ if we can prove $R\left(, S^{(m)}(, 0),, S^{(n)}(, 0),,\right)=0$ with (a), (h), (i), (I): the condition is that $m \ll u$ be a well ordering of the natural numbers und that no contradictory equation (12.8) be provable with the mame rules (a), (h), (i), (1). Let us say that such a set of axioms is admissible. $\Lambda_{\text {a }}^{3}$ is an ordinal logic If the calculus leads to none but true number theoretic theorems when an admissible sat of axions is used.

In the case of $\Lambda_{G}^{2}, \operatorname{Rec}(\underline{\underline{Q}}$) describes an admisaible set of suions whenever a is an ordinal formala. Λ_{G}^{2} will therefore be an ordinal logic if the celculus laads to correct results when admissible axions are used.

To prove that admissible axions heve this property I shall not attempt to do nore then show how interpretations can be given to the equations of the calculus so that the rules of inference (a) - (k) boome intuitively valid methoda of deduction, and so that the interpratation agrees with our convention regarding numbe: theoretic theorens.

Each expreasion is the name of a sunction, finich may be only partially defined. The expression S corresponds simply to the successor function. If $O /$ is either R or functional variable and is
of index $\int(p+1$ symbols in the index) then it corresponds to a function g of p natural numbers defined as follows. If

$$
\operatorname{gg}\left(S^{\left(r_{1}\right)}(, 0,), S^{\left(r_{2}\right)}(, 0,), \ldots, S^{\left(r_{p}\right)}(, 0,),\right)=S^{(l)}(, 0,)
$$

is provable by the use of $(a),(h),(i),(1)$ only, then $g\left(r_{1}, \ldots, r_{p}\right)$ has the value l. It may not be defined for all arguments, brit its value is always unique. for otherwise we could prove a 'contradictory equation and $M(m)$ would then not be an ordinal formula. The function e corresponding to the other expressions are essentially defined by (b) - (f). For example if g is the function corresponding to g and g that corresponding to $(\Gamma \mathrm{O})$ then

$$
g^{\prime}\left(r_{1}, r_{2}, \ldots, r_{p}, l, m\right)=g\left(r_{1}, r_{2}, \ldots, r_{p}, m, l\right)
$$

The values of the functions are clearly untrue (when defined at all) If given by one of (b) - (o). The case (f) is lass obvious since the function defined appears also in the definiens. I shall not treat the case of ($0 f(\mathcal{H})$ as this is the nell know definition by primitive recursion, but let us mow the values of the function corresponding to (OJ! $R!d y$) are unique. Without loss of generality we nay suppose that (\mathcal{N}) is of index 1 . We have then to show that if $h(m)$ is the function corresponding to \mathcal{G} and $r(m, n)$ that corresponding to R, and $k(u, v, w)$ a given function and a a given natural number then the equations

$$
\begin{align*}
& l(0)=a \\
& L(m+1)=k(h(m+1), m+1, l(h(m+1)))
\end{align*}
$$

do not ever assign two different values for the function $l(m)$. Consider those values of r for which we obtain more than one value of $\ell(r)$, and suppose that there is at least one such. Clearly O is not one for $\ell(0)$ can only be defined by α). As the relation \ll Is a well ordering there is an integer r_{0} such that $r_{0}>0, \ell\left(r_{0}\right)$ is not unique, and if $s \neq r_{0}$ and $l(s)$ is not unique then $r_{0} \ll S$. Putting $s \in h\left(r_{0}\right)$ we find also $s \ll r_{0}$ which is impossible. There is therefore no value for which we obtain more than one values for the function $\ell(r)$.

Our Interpretation of expressions al functions give us an inmediate interpretation for equations with no numerical variables. In general we interpret on equation with numerical variables as the conjunction of all equations obtainable by replacing the verinblea by numerals. With this interpretation (h), (i) are seen to be valid methods of proof. In (g) the provability of
$\left.\log \left(\operatorname{cr}\left(x_{1},\right),\right)=g_{1}\left(\cos s\left(x_{1}\right)\right)_{2}\right)$
 preted as meaning that the implication between these equations holds for all substitution of numerals for X_{ρ}. To justify this one should satisfy oneself that these implications always hold when the hypothetical proof can be carried out. The rule of procedure (i) Is now seen to be amply mathematical induction. The rule (k) is a form of transfinite induction. In proving the validity of (k) we may again appose (12) is of index ${ }^{1}$. Let $r(m, n), g(m), g_{1}(m), h(n)$ be the functions corresponding respectively to $R, \lg , 0{ }_{1}$. iN.

We shall prove that if $g(0)=g_{1}(0)$ end $r(h(n), n)=0$ for exch positive Integer h and $g(n+1)=g_{1}(n+1)$ whenever $g\left(h(n+1)=g_{1}(h(n+1))\right.$ then $g(n)=g_{1}(n)$ for each natural number n. We consider the class of integers w for which $g(n)=g_{1}(n)$ is not true. If the class is not void it has a positive member H_{0} with precedes all other members in the well ordering \ll. Int $h\left(h_{0}\right)$ is mother member of the class, for otherwise should have
$g\left(h\left(h_{0}\right)\right)=g_{1}\left(h\left(h_{0}\right)\right) \quad$ and therefore $g\left(n_{0}\right)=g_{1}\left(h_{0}\right)^{\text {tine. }}$ h_{0} would not be in the class. This implies $h_{0} \lll h\left(h_{0}\right)$ contrary to $r\left(h\left(h_{0}\right), u_{0}\right)=0$. The class is therefore void.

It should be noticed they we do not really need to mace use of the fact that O is an ordinal formula. It. suffices that \underline{Q} should satisfy conditions (a) - (e) (p.29) for ordinal formulae, and in place of (f) satisfy (f^{\prime}).
(f^{\prime}) There is no Formula I such that I (\underline{I}) is convertible to a formula representing a positive integer for each positive integer n, and such that $\underline{Q}(\underline{I}(\underline{n}), \underline{h})$ cony 2, for each positive integer n for which $\underline{Q}(\underline{n}, \underline{n}) \operatorname{conv} 3$.

The problem as to whether formal satisfies condition (a) - (e), (fl) is number theoretic. If use formula satiating these conditions instead of ordinal formae with Λ_{G}^{3} we have a non-oonstructive logic with certain advantages over ordinal logics. The intuitive judipents the nt must be amide are all judgments of the truth of number theoretic theorems. Te have seen in $\hat{2} 9$ that the connection of ordinal legics
with the classical theory of ordinals is quite suporficial. There seem to be good reasons therefore for gjving attention to ordinal formulae in this modiiled sense.

The ordiral logic Λ_{G}^{3} appears to be adequate for nost purposes. It should for instance be possible to carry out Gentzen's proof of consistency of number theory, or the proof of the miqueness of the normal form of a well-formed formula (Church and Roser [1]) with our calculus and a fairly simple sot of axiocm. How far this is the case can of course only be detervined by experiment.

One would prefer that a non-constructive mystom of loge based on trangfinite induction were rather sinpler than the one we heve described. In particular it would seem that it hould be possibla to eliminate the necessity of stating explicitly the validity of definitions by primitive recursions, as tifs principle itself can been shown to be valid by transfinite induction. It is possible to make such modifications in the syotes, even in such a way that the resulting syatem is still complete, but no real sdvantage is gatned by doing so. The effect is dway, so far as I know, to restrict the clase of formilae provable with given set of axioms, so that we obtain no theorems but trivial restatements of the axions. We have therefore to compromise between simplicity and compehersiveness.

Index of definitions

No atterpt is being made to list underlingd formulae as their meanings ars not always constant thronghout the papar. Abbreviationa for derinite well-fomed formale are liated alphabetically.

Abbreviatioa			Page	Abbreviatio			Page
Ai	-	-	58	Iuf	\bullet	-	42
$A L$	-	-	42	Jん	-	-	65
$B d$	-	-	42	k	-	-	54
Ck	-	-	48	Lim	.	-	42
Cm	-	-	94	αs	-	-	40
Comp	-	-	61	M	-	-	94
Dt	-	-	9	M_{P}	-	-	54
E	-		54	$M g$	-	-	67
form	-	-	7	Nom	-	-	2.7
G	-	-	54	Gd	-	-	61
Gm	-	-	80	T	-	-	42
$G r$	-	-	7	Q	-	-	24
H		34.	40, 41	Prod	-	-	70
H_{1}	-	-	40	Rec	.	-	93
${ }^{H}$	-	-	42	$R E$.	-	67
$H g$	-	-	68	S	.	-	5
\pm		-	4	Suen	.	-	42
				S_{V}	-	-	69

Bibliography

Alonzo Cburch

[1]. A proof of freedom from contradiction, Proc. Nat. Acad. Sci., 21 (1985) 275-281.
[2]. Mathematical logic, Lectures at Princeton University (1935-5), mimeographed, 113 pp.
[8]. An unsolvable problea of elementary number theory, Am. Jour. Math., 58 (1936) 345-563.
[4]. The constructive second number class, forthcoming in Bull. An. Mnth. Soc.

Ge Genteren

[2]. Die Fiderspmachafreithett der reinen Zahlentheorie, Nath. annalen, 112 (1936) 493-565.

A. Godel

[1]. Uber formal unentscheidbare Satre der Principis Hathemstica und verwandter Systeme, Monatsherte Math. Mys., 38 (1951) 173-198.
[2]. On undecidable propositions of formal mathematical gystems, Lectures at the Institute for Advancer Study, Princeton, N. J. 1934, mimeosraphed, 30 pp .

S. C. Heone

[1]. A theory of positive integers in formal logic, Am. Jour. Math. 57 (1935) 155-173 and 219-244.
[2]. General recursive functions of natural numbers, Math. Amalen, 112 (1935-6) 727-742.
[8]. λ-definability and recursiveness, Duke Nath. Jour., 2 (1986) 340-353.

E. Le Post

[1]. Finite combinatory processes - formulation 1, Jour. Symbalic Logic, 1 (1936) 108-105.

I. B. Rossex

[1]. Gödel theorems for non-constructive logic3, Jour. Symbolic Logic, 2 (1937) 129-137.
A. Tarski
[1]. Der Mahrheitsbegriff in cen formalisierten Srachen, Studis,

Philosophica, 1 (1938) 261-405, (translation from the original papar in Polish dated 1953).

A, E. Turing

[1]. On cosputable numbers, With an application to the Entschoidungmproblem, Proc. Lond. Math. Soc. (ser 2) 42 (1086-7) 230-265, A correction to this paper has appoared in the same journal 4s (1937) 544-546.
[2]. Computability and λ-definability, Jour. Syabolic Logic, 2 (1987) 155-165.

E. Zermelo

[1]. Grundiagen iner mllgemeiner Theorie der nathematiscion Satesysteme I, Fund. Hatio, 25 (1935) 136-146.

Alonzo Church and S. Ce Kleone

[1] Pormal definttions in the theory of ordinal numbers, Fund. Math. 28 (1936) 11-21.

Alonzo Church and J. B. Rosser

[1]. Some properties of conversion, Trans. Am. Math. Soc., \$9 (1936) 472-482.

D. Hilbert and T. Ackermann

[1]. Grundrüge der theoretischen Logik, (2nd edn. revised Berlin, 1988) 180 pp.
A. N. Mattehoed and Eertrand Fus3el1
[1]. Principia Hathematica, (2nd edition, Canabridge, 1925-1327), 3 vols. D. Milbert
[1]. Uber das unendliche, Math. Annalen, 95 (1926), 161-190

