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The well mown theorsn of Gddel shows that every ayaten of
logic 1s in a certain sense incomplete s it gt the snme time it in-

dlcates means whereby from a system [_ of logic 2 more complete

»

/ ,
system [ may Le obtained. By repeating the process we ¢t a

/

/ 2 :
sequence A~ LI=L} LL-‘- L‘ 5 Lg-', L se-+ Of logles each rore

2
corplete than the precedmg. A lozic L‘_, may then be cc_mstz'uctéd
in whizh the »rovable theorems zre the totalitj of theorems prov-
able with the help of the logics L L /-/—.2_ yess We mny then form
L,  relate to L, in the same way as L vas related to L- .

Proceeding in this way we can assoclate z system of logic.with any

b d - > l b}
given comstruective ordinal.” It may be agked vhether sz secuence of
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lThe situation is not quite so simple as 13 suzzested by this crude
srgument. See pages 44-48. :
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logics of this kind is complete in the sense that to eny problem
A there corresponds an ordinal & such that A is solvable by
meang of the loglc L—;‘ - I propose to investigate this problem
h a rather more general case,and to zive some other examples of
“ways in which systems of ldgic-may be associated with constructive

ordinals.

1. The calculus of éggve;si@. GiSdejl, representations.

' It 1311}. be convenient to be able to use the 'conversion calcu-
lus! goi/ Church for the dea(‘:ription‘ of functions and some other
purposes. This will m:ke greater clnri_.ty‘ and simplicity of ex-

: pressién possible.' I shﬂl give a short account of this calculus.

Yor more detailed descriptions see Church 3], [2], Kleeme [1],



Church =2nd Rosser [1].

The formulse of the calculus are formed from the symbols { ’ } '
(+)> [ IE A S, and en infinite 1ist of others called
variebles; ve shall take for our infinite Ust a B ...z X' x'
Certain finite aequené.es 61‘ such symbols are called well-formed
formilae (ebbreviated to W.F.F.); we shall define this class induc—
tively, and simultaneously define the free and the bound variables
of » ¥.F,F, Any variable is &« W.F.F.; it is its only free wariable,
and 1t has no bouni varlables. g is a W.F.F. and hes no free or
bound variables. If M and _1\1 are W.F.F. then {Mj] (_f_\_l) is a W.F.F,
vhose free variables are the free variables of (] together with the
free mr.iables of N » and whose bound variables are the bound var-
1ables of M together with thﬁs& of V. If M 4s & FuF.F..and
_\_/ one of ita free vairiable_a, then Ay [MJ isra. W.F.F. vhose [ree
variablss are those of M with the exeception of y » and whose
boun:i va.riablga ere those of M together with V . Ko sequence of
symbola is a ¥.F.F. except m‘consequence 2f these three statements.

In metamathematical statements we shell use underlined letters
to stend for variable or undelermined formmlae, as was done in the
last peragraph, and in future such letters will stand for well~formed
formulae unless othorwise st.a.'te.d.‘ Small letters underlined will
sfand for formulae representing undetermined positive integers (see
below). o |

A ®.F.F. is said to be in normal form if it has no parts of

the form {X\_/[M_J} ( N) and hone of the form {‘{ g}([‘_‘l)]’({\_l)

where M and _(\_/ have no free variables.



We say that one W.F.F. is immedistely copvertible into another
if 1t is obtalned from it eithsr by

(j,) Repl;cr:ingronvo occurrézice of a well-formed pert A\_/[Q’IJ
by /\U[N_] . where the variable U does not occur in™M, and N
i8 obtained from M vy replacing the veriable V by U throughout.
(ii) Replacing a well-fo"med pa.rt{ AV ]_MJ} [ Nbe the formulae
which is obtained fron M by replacing V by N t.hmgrmt, provided
' that the bound variablos Of'b1 are distinct.botn from V’ and from
the = free variables of N.
(iii) The converse process of 11. 7
- {1iv) Rsplacing a well-Tormed nar't {{S}(M)}( M) by
)\{’L\h[{ﬁ(ﬂ,} (Km] if M is in normal form and has no free variables.
7 (v} ReplacinganL—fomedpart{{S}(M }(N) by
N.[\XLH} (?ﬁ):” it M and N are in normal form and not transform-
- able into one another by repeated’apnlieation of 1, and hove no»frne
.variables. |
{vi) The ‘converse process of iv.
(vii) The converse process of v.
These rules could have been expreased in such a -ay that in no
B cane  could there be any doubt as to the admissibility or the result
: of the transfbrmation {in particulzr this can be done in the case
of pmocesa vu).r , | 7
B | A fornnla A 18 said to be convvrt;bls 1nto enother 8 (abbre-
Vviated to) A conv’_B 3y if there 1s'an finite chain of imvad:late |

conversions leeding frozm one fcrm;ln tn fhna other. - I-t'ri-s eaaily



seen that the relstion of convertibility is an equivalence relatiom,

i.e, it is sjnmetric ’ tra.nbitive and reflexive.
Since the formulse are lisble to be very le,ngthj; we neecd means
for abbreviating théni. If we wish to introduce a parti(:ﬁlar. letter
as an abbreviation for a particular lengthy formula we shall write
the letter followed by '—> ' and then by the formula, thus
T—> Ar[n]
" indicates thet [  1is an abbreviation for AX[X]. We shall also use
the arrow in les: sharply defined senses, imt never so as to ceuse
eny real confusion. In these cases the =eaning of the arrow my‘
be rendered by the words 'stands forlt.
If a formula F 1s, or is represented by a single aynboi ve
“abbreviate {f} (X) to E(X). A formla {{ F} (X)}(Y) may be
sbbreviated to {f} (}51 _\_/) » OT %o f(}_gz/) if [ is, or is
,_representeqf b:-'lé. gingle ‘symbol. Similarl;r "for {{{ f} (5?}(]’)}(?) »
etc. A form];a' A Vl [_)\V,_, - J:A\Ik [_Pﬂ:” ] nay be abb!;ev’iated
to )\\_/1)_/,_...\4. M,
| Te have not a.s yet é.svsi;.;ned any meanings to our formulae, and
we do not irtend to do so in genewnl. An exception nay be nade
for the case of the positive integers which sre very conveniently
reprasenied b;' the formulae /\{.1\, x{»(%) | ) z\{?ﬁ%éf (?K)) goas
In fact ﬁe- introduce the abbreviations
1= N*. ¢
3 =7 MrJ{)
3 MG

_etc.




-

and also say for example that /\,L?“ ’L{ Yl(ﬂ) ) {in full
>\+[)\X[{f}((’(—} (X))JJ ‘répresents the positive Integer
2. Later we sﬁall allow.certain formulas to represent ordinals, but
~otherwlse we leaw' them without expliclt meaning, an 1ﬁ:plicit maéning;
may be suggested by the abbreviations used. In any cese where any
meaning is assigned to formlae 1t ia desi.mﬁle that the meaning he
inveriant under converﬂioﬁ. Our definitions of the positive Integors
de not violate ‘t‘nia_ requiromn_t, a3 it may be proved that no two for-
mulae representing dilferent positive Integers are convertible into
one a.nofher.

. In connection with the positive ri.nt-age’rs' we introduce the abbre~
viation

S = /\u‘[ﬁ {v[“- (¥, x))

This formula has the property that if b rapresents & positive in-

L >,

teger S( L4 ) 1s convertible tc a formula representing its successor,“
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Formlae mpmsﬂnting unde terwined positive integers will te re-
presented by small letters underlined, and we shall adopt once for all

the convention that if a letter, A say, stands for =z positive integsr,

then the same letter underlined, M- , stands for the formula representing

the positive integer. Then no confusion arises from doing so we shall

omit to distinguish between an intsger and the formula wirlch repreasents it.

Suppose § (w) 1is = function of positive integers taking
positive integers as values, and that thers is s W.F.F, F . not
contalning $ such that for each positive integer h , . F{ &) is

. convertible to the formula representing 'f (U\) ~» Ve ashall then say
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that f( W %e A ~dsfinabls or formally definable, and thsut f
formally defines -F(P\) « 5imilar conventions are u#ed for functions
of more than one variable, The sum function is for inetance
formally detined by Aabf*%.a(f,b(%,%)) ; in tact for any

positive integers m , w 'P for which M + U1 = P e hve

{Aabfx.c (H b(F x)f(%,4)conv 7

In order to emphasize this relation we introduce the abbreviation

X +Y —> [ Nabfx. o (¥, 6[{,7&))}(7_(

end will use similar notatiins for sums of three or more terms,
productz eto. |

For any ...F.r. g' %o shall say that Q‘ enumerates
the sequence &(1),&a(2) ,.. . and any other sequenoe
whose terns are convertible to those of this sequence.

“hen a formula is convertible to another whieh is in normel
form tin second is deseribed as a normal form of the first,

which is then said to have a mormal form. I quote hare some of

tke more important theorems concerning normal forms.

() Ifa formila hes two normal forms they are convertible
into ons another by the use of (i) aelome. (Churech and Rosser [1],

479, 481).

{B) If a formula has a normsl form then every well-formsd

part of it has a normal form. (Church and Rosser [1], 480-481).

(C) There is (demonstrably) no process whersby one can



tell of & formls whether it has a normal form. (Church[!], o /
360, Taeorem XVIIT.) | 7
Te often need to be able to descriﬁe formulse by means of
' prjsiﬁive integers. The method used here is due to Gdel {Godel
1. To G.&cl‘l‘ single symbol § of the calculus we assign an inte-

ger [5Tas in the table below.

1 s otarltyedaslal oo J2]x[¥T¥T

vls] 1 | 2 (3(4]5]--- [30l32{32]33 - - .
. . K ri° g ~
T 5 sz_---Sk is a sequence of symbols then o rifal 3 L ’-J~ - ,Pkr[__sk:{ ,

(ﬁhere ’P i 15 the k tn prime number) is called the GSdel repre-
sentation {G.R.) of. that sequence of symbols. No two W.F.F. have
the ssme G.R.
'I‘u§ theorens on G.[ .'oi‘ W.F.F. are quotéd here.

(D) There is a CW.F.F. form suen that 1f ¢ {s the G.R.
of a V. F.F A without free variables then fm« ( ‘L) conv [, (This
follows from a similar theorem to be found in Church [‘] s 5%-66, /
~Metads are used there in place of G.R.) : )

(E) There is a W.F.F. Gy such that if A 13 a W.F.F.
with a normal form without free variables,‘ then Gv ( f" ) conv G ,

where o is the G.R. of a noml form of F/ (Chu.rch {3], 53-68, (
as (D).




2. Effective calculability. Abbreviation of treatment.

A function is said to be Teffectively calculable! if its values

- can be found by some pufely mechanical process. Although it iz fairly

easy to get an intuitive grasp of this idea it is nevertheless de-
sirable to have aome more definite, mathematically expressible defini-
tion. Such & definition was first given by GSdel at Princeton in
1924 {Gadel [2], 26)Vfbllowing in part an unpublished suggestion of
Herbrand, and has since been developed by Kleene {Kleene [2]}). Ve
shall not be concerned much here with this particular definition.
Another definition of effective calculability has been given by
Chureh {Church [3], 856-858) who‘ jdentifies it with ) —definability.
The author has recently suggested a definition corresponding more
closely to the intuitive idea (Tur_ing f1], see also Post [1]). It
was said above "a function is effectively calculable if its values
can be found by some pufely mechanical process."™ We may taxke this
statement literally, understandin;?g purely mechanical process

one which could be carried out by”a machine. It is possible to

give a mathematical description, in a certain normal form, of the
structures of these machines. The development of these ideas

leads to the author's definition of & computable function, and an
identification of computabilityS with effective calculability. |

. A . VR - o — . — ——— ————— —— —— Y e Wi e e e — - W ——— — — —— — —

We ahall use the expression 'computatle function'! to mean a
function calculable by a machine, and let 'effectively calculebls?
refer to the intuitive idea without particular identification with
any one of these definitions. We do not restrict the values taken
by a computable function to be natural numbers; we may for instance
have computable propositional functions.

. — e i e ——— o — — — A — A —— D — — — S S T—— —— —— - — A v oo oows ety mew e

It is not difficult th#ough somewhat laborious, to prove these



three definitions equivalent (Kleene [$], Turing [2]).
~In tﬁé.prnaent paper we shall make.conaiderable use of
Church?s 1dentification of effective calculability with) -
definability,qu,»what cones to the sagze, of the identification
with computebility and ohe of the equivalence theorems. In most
cases‘wherﬁ we hzve to deal with an effectively oalculablé function
we shall introduce the corresponding W.F.F. with some such phrase s
"the function § 1s effectively calculable, letF be a formla X -
defining it" or "let F be a formula such that F(4)1s convertible
to « + « Whenever h represents a positive integer". 1In such cases
there i3 no difficulty in seeing how s machine could in principle
be designed to calculate the values of the fﬁnction céncerned, nd
assuming this done the egquivalence theorem can be apolied. A
staténeni asg to wﬁat ths formula Fvactually is may be omitted. Ve
may introduce immediatel; on this basis a ¥.F.F. @ with the property
that (., ﬂ) conv r it r‘is the greatest positive Integer for
which h~r d1v1des v o, if ény, and 1s 1 if there ia none. Ve also
introduce DL with the sroperties
Dtln, 4) conv 3
Db(n+w, n) conve
Dlu, na m) convl |
There 18 another point to be made clesr in connection with
the polnt of view we are adopting. It is intended that all proofs
- that are givgn ﬁhuuld bé regerded no more critically than proofs

in classical analysis. The subject matter, roughly speaking, is
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constructive gystems m’;" logic, but as %he purpoae is directed to-
wards cheosing & particular constructive system of logic for prec-
tical use; sn sttempt at this stsge to put ocur theorems into
constructive form rwculd be putting th: cart before the horse,.

Those computable functions which take only the values O snd 1
ara of particular ixportance since thuy determine and are determined
by comgmtable pfaporties, as way be seen by replaumg YO and 11
by Ytrae' and 'false’. Bui besides this type of property we may
have to consider a different type, which is, roughly aspeaking, less
eonstructive than the computable properties, but more mo than the
general predicates of élasaical mt}mmtics.‘ Suppnae we have a
computable function of the natursl mumbers taiting natursl numbers
as valuesa, then correspoadin: to this func'_c.ion there is iiw PIo=-
perty of beiug a value of the function. Such s property we shall
describe as "axinmtic‘;ﬁ the reason for using this ferm is that it
is pessible to define such a property by giving a2 set of axioms,
the property to hold for a given argument if qnd only if it is pos-~
sible to deduce that it holds from ithe axioms. »

Exiomutic properties may also e cﬁamct&rize{i in this ways A
property \k | of positive integers is axiomatic if snd only if there
is a computable property CP of two positive integers, such that
¢ (%) 15 true 1f and only if there is a positive integor Y such that
ch(, \/) is true. Or agein uf' 1s exiomatic if and only if there is
a WP.F. [ such that (“)1a true if and only ££ F (“) conv 2. |
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By a mmber t_lLareth theorem  we shall mean a theorem of the

I believe there 13 no generally acceptea uweaning for this term, btut
it should be noticed that we are using it in a rather restricted
sense. The moat generslly accepted meaning is probably this: suppose
we take an arbitrary formumla of the function calonlue of first order
and replace the function vaerisbles by primitive recursive relations.
The resulting formula represents a typical number thﬁoretic theorem
in t.hia (mre general) sense. _

form ' O(X) vanishes for infinltely many natural numbers X ',

where D(X) is a prinitive recursive function.

N — - — - A iR e i ——— — —— G — . — o ——— v W n . oo - -

5 Primitive recursive functions of natursl numbers sre defined induce
tively &8 follows. Suppose +0k'1) oy xuq)) gr(xl) oy xu), L‘(_ﬂ” ey Nigy )

are primitive recursive then @ [XU ce) ‘f\h\)is primitive reeursive if

it is defined by one of the sets of equations (&) ~ (s).

{a) (P/%[)““‘ ) l"[ﬁ Y l)‘a'(xu “) 1) u-,)"h),(’$h$i‘)
® Qs K= 00 hn)
{e) X ) L 5 vhere W= 1 and a 1s some particulsr nat-

ursl nnmber.

(@ @(x): x+1 (w=1)

(e) cF-[;gjj.,.)Xh_” ) ‘F(*n')r - ')

‘-P(*t y -3 Yy XF1) W%, % wr QL% xk))
The elass of primitive recursive function 13 more restricted tnan the
computable functions, but has the advantage that there 4s a process where-
by one can tell of a set of equations whetihwr if defines & primitive
recursive :i'unction in the menner described above.
£ O(X,)--.y Ru) is prinitive recursive then (‘A”... 7&"): “7
ia deacribsd as a prinmitive recursive relation between)‘, )"

‘Pie shall say that s problem is nuaber theoretic il it has been shown
that any solution of the problem may be put in the farm of & proof

of one or more pumber theoretic theorema. More accurately we may
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say that a claas of prﬁblems is number theoretic if the solution
of m;y_'oua of them can be tranaformed (by a uniform éroeess) into
tue form of proofs of nﬁhber theoretic theorems.

T shall now draw a few consequences from the definition of
'number theoretic theorems', and in section 5 will try to justify
confining our considerations to this typé of problem.

An alternative fofm for number theorstic theorems 1is 'for
each natural number A there exists a natural number Y such that
@ (% y) venishes', where CP( %,Yy/ 1s primitive recursive and con-
versely. In other words, there is a rule whereby given the func-
tion B(*) we can find a function CP(X, Y) » or given (P[K, 7)
we can find a functionm 8()&) , 80 that 8(7() vanishes Vinfinitely
often! is a necessary and sufficient coddition for *for each X
there i3 Y so that (()(x)y): O '+ In fact given Q[X] we de—
fine 7 '

Plx,y) = BLY)+ %(x,y) |
where W (X ,\/) is the (primitive recursive) function with the

properties
(%)= L (V4¥)
= 0O (\/ >X) :
If on the other hand we are given CP(X,\/) we define G(x) by

the equations
8,(0) =3 | .
t (@ (% (5 (0)~1 B,(8 (¥
@1(7&1-1): 3 —g—(el (ﬁ)) (‘?( J( ) J ))
B(x) = ¢(®3(8,(x)~2, ¥ (6(x))

where %;(X) is to be defined so as to mean 'the largéat S for



LY
which YV divides X ' and 3’=x to be defined primitive recursivel:

so as to have its ususl meaning if X is a multiple of 8. The

function € (%) 1s to be defined by the equations G (0): 0, o (x +_7_)7=_‘Z_ ]

It is easily verified that the functions so defined have the de-
sired properties.

Te shall now show that questions es to the truth of statements
~of form ‘does { (%) vanish identica_ly', ‘where {(x) is a com~
>Uutah1.e function, can be reduced to questions as to the truth of
number theorstic theorems. It is understood that in each case
the rule for tﬁe- calculation of -F(X) is given a:d that one is
satisfied that this rule is valid, i.e. thst the machine which
shoul calculate {(%) 1s circle ‘ree (Turing [1], 2%2). Tie
finction ‘F'C*) being computable is géneralrracu-rsive in the
Herbrand-Gédel seﬁmrse, end therefore by & genernl theoren due to
K]senes is expressible' in the fora

-—.——-——-———-———.—‘-——-——-.——.—-——4—-—-—-—-—.——-—

% Xleene [3]1, 727. This result is really superfluous for our
purpose, as the proof that every computable function 1s general
recursive proceeds by showing that thess functions are cf form
(s.2). (Turing [2], 161).

.—.——————-—--’.—-—-————-——_—————-—.——.—-—-—“-‘—

| Cg(eyLetoy) o) 3.2)
 where €Y [U()] means tthe least Y for which A7(y)1s true® and
«f(\/) and LF(X,\/) are primitive recursive functions. Then if
we define O(X) by the equations (3.1) and
e(x)= ¢( ¥y (8(x) - 1, %, (9, (7())—1— (% (8, [x)))
1t will be seen that (%) vanishes identically if and only if
(X) vanishes for infinitely many values of X .

" The converse of this result is not quite true. Ve camnot 'say'




that the queation as to the truth of any number theoretic theorem

~is reducible to a question as to whether a corresponding comput-

able function vanishes identieally; we should have rather to say 1
that it is rreducible to the problem as to whether a certain machine

i1s circle free and celculates an identically v’anislﬂ.ng ﬁmction. :

But more is true: every number theoretic theorem 1= equivelent to the

statement that & 'currgspmding wachine is circle free. The be-

havior of the machine may be desciribed roughly as follows: the machine

[ =

is one for the calculation of the primitive recursive function 19[’4)
of the number fheoratic problem, except that thé results of the
calculation are first arranged in a form in which the figures O and
1 dornot occur, and the machine is then modified so that whenever
it has bsen found that the function vanishes for some walue of the
argument, then O is printed. The machine is cirele free if and
. only if an infinity of these figunés are printed, i.e. if and only
if 9(‘&) venishea-for infinitely many velues of the argument.
That, on the other hand, questions e&s tc circle freedon mey be re-
duced to queétions of the truth of number theoretic theorems follows
from the fact that O(*) 1s primitive recursive when it is defined
to have the value O if & certain wachine e/l prints 0 or 1 in its
(\/\+1) th émplete configuration, and to have the value 1 other~
rise. |
The con?ersion calculus provides another normal form for the
number theoretic theorems, and the one we shall find the most

convenient to use. FEvery number theoretic theorem is eguivalent
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to a statement of the form ! é?[g) is convertible to 2 for every
!.E.F.Z’;epresentmg a positive integer', (1 beirg & ¥.F.F. determin-
ed by the theorem; the property of fz here assefted will be des-
cribed briefly as(fj is dual. Conversely such staterents are re-
ﬁnniblé to nusber theoretic theorems. Tkhe first half of this
assertion follows from our resulis for computable functions, or
directly in tnis wsy. Since O(X-1) +& 1is primitive recursive
' it is formally definable, by meens of o formule (T let us say. Kow
there is (Kleene [1], 232) a W.P.F.( with the propesty that if [ (¥)
| is convertihle to a formuls representing s positive integer for
each positive Integer v , then (°(T,n) is convertible to 5
vwhere § 18 the wth pesitive integer  (if tbere is one) for which
T(Q) conv 2; if T{C) conv 2 for less than A values of £  then
@LT, t;\_)hna fm normel form. The formule g(@[ & »_x»vﬂltherefore
“be convertible to 2 i and only if §(x) vanishes for at least
i velues of X , and will be convertible to 2 for every posi-
tive integer Y. if and only if B(¥] vanishes Infinitely often.
To prove the second half of the.assertion,we take GbSdel repre-
sentations for the formulse of the conversion calculus. Let c(x/
bo 0 if X 1s the G. R. of 2 (L.e. If X & 2°. 3§ 73_ Thbd
07 iq"’. 23" 2g. 31 37“? L. L3 475%’3"_ §qr. 617 67%)
and otherwise he 1. Take an enumeration of the G. R, of thé for— :
mulse into which [ (w)1s convertibles let (4, ) be the 4 th -

number in the enﬁnergtion. ¥e can arrange the enumeration so that

() 18 primitive recursive. Now the statement that A=)




is convertible to 2 for every pojaitive integer v is equivalent

to the statement that for each positive integer /4 there ia a
positive integer » such that ¢ (&(“«))= O end this is
muwber theoretic. | | ‘

It is easy to qhow that & nmumber of unsolwved problers sﬁch
a8 the problem as to the truth of Fermat's last theorénrare
nuzber theoretic. There are, however, elso problems of enalysis
which are mmber theoretic. The Riemann hypothesis gives us an
emple of this. Ve denote by 3" [S)the function defined for
Rs> T > 71 by the seriBs“Z ,‘s and over the rest of the com—
Plex plane with the exception’of the point 5= 1 by analytic
continustion. The Riemann hypothesis asserts that this function

does not vanish in ths domai.n G‘?“' « It is easi.ly shown that this

1seouivalent to saying that it does not vanish for 2>6‘7— Rs=t } 2

i.e. that it does not vanish inside any rectangle 2> 6"72_ +—l,:
‘where T 13 en integer greater than 2. Now the function satisfies
the inequalities N,- _ | 7 -1 o
l?f[s)—-‘zv\" - I<'Zf(’\"*z> Rt
| S~ T(s) | < |s-5"]. bot 240 < 2,
and we can define & primitive recursive function 5(1) 2; m, !
sm:hr that ' N Iy |
[ 504 mpml 1 1) = 1 [ 2 w5 2 |
and therefore if we put ( /

5( 'f,jl"?, b, M, M>+ 2 M)‘ =X (4 m, M}

,1>f>zr
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. we shall have

Y. X(€m, M) —12Q7T
€+49 m+19 ‘7 vy
e L4 Q:.' f*l - W - X 7
;f, ¢ = < < M,2< 4'4 4: 19L&/, = 14292

if ve define B (M,T) to be the smallest valune of K[‘P; e, M)

for which 4 ¢ L +.L<£ - ~L -—_ A
FTF TRt RLT T , 2+ <-;,<| ~S
then the Riemann hypothesis is true if for ea.ch T there 1s ™

satisfying B (M T') > 12227 . If on the other hand there is
T such that for a1l M, B(M,T) £ 122 T , the Riemam
nypothesis is false; for let e W oy be such that

(eh:« “in, M) < "zz"then‘ (E €y *+ ey )!

eH-(-LlM

‘How if Ov is a condensation point of the sequence M then
since{(8)1s continuous except at §=71 we oust have Y(a )= O
implying the falsity of the Riemann hypothesis. Thus we have

: ' —
reduced the problem to the question as to whether for each |

there 18 M for waick B(M,T) > 12271, B( M, T)

is primitive recursive, and the problem is therefors number theoretic.
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Cmpam Rosser [1]. -
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Let us suppose that we are supplied with some unspecified

means of solving nuaber theoretic problema; s kind of oracle as it
were. Wo will not go any further intpi the wture of this oracle
than to say that it camnot he & sachine. With the help of the
oracle we could form 2 mew kind of machine (eall them o-machines),
having as one of its ﬁmdamental processes that of solving a given
number theoretic problem. MNore vdef.i'nirte'ly these mechines are to
béhan in this way. The moves of the machine are deternined as
usual by a table except in the case of moves from o certain inter—
nal configuretion £/ . If the machine is in the internsl config-
7urat’ion0’ and if the sequence of ambois marked with £ 15 then the
‘well formed” forwula f] , then the zachine goes into the internal

——---——--—-—.—--——-—»-—-—-—-———-————-———-—-—.——-—

Without reel lods of generality we may sipnose that H
is always well formed.

NS WS AR VS S D WV D S D WD Ay —— . WU D L. - —— —— — Y. YN A amt— . w——n e =t =

is dual. The decision as to which is the ocase is referred to the
oracle. 7 | |

These machines may be deseribed rby tables of the same kind
as used for the description of s-machines, there being no entrles,
however, for ‘the intemal configuration 4. Te obtain description
numbers from these tables in the same way as before. If we nake |
the convention thet in assigning mumbers to internal configurations
Y, f /7'/ are always to be %' Yy o 9,2  then the descriptiom
numbers dafamine the behaviourof tm machines miguely.
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Given any one of these machines we may ask ourselves the gques-

tion whether or not it prints an infinity of figures O or 1; I

~-assert that this cless of problems is not number theoretic. In

view of the definition of 'number theoretic problemt this weans to

say that it is not poassible to construct an o-machine which when

9

gupplied” with the description of any other o-machine will determine

A . S . ———— —— — —— . —— — g — ——— —t— e Wy b — S —— i — — — ow—— — i—— e —

- whether that machine is o-cirele free. The argument may be taken
~over directly from Turing [1], p. 8. We say that a number is
 o-satisfactory 4f it is the d.eac#iptibn number of an o—cirecle free machine.

- Then if there is an o-machine which will determine of any ‘nteger

whether it is o-satisfactory then there is also an o-machine to cal-
cuiate the values of the function 7 _?u/h) « Let Y[u) be the

kAh o-satisfactory number and let (F‘\( ) be the mvth figure

. printed by the o-machine whose description rumber is /. This

o-machine is circle free and there is therefore an o-satisfactory
numﬁer K sue: thet @y [a)= 1~ .. (n) all w , Puting wn= H
yields a contradiction. This completes the proof that problems of
circle freedom of o-machines are not ‘number theoretic. '

| Propositioss of the form that an o~machine i3 o-circle free

can always be put in the form of propositions obtained from formulse

‘of the fnctionsl calculus of First order by repl&cjng sone of the

functionel vsrisbles by primitive recursive reletions. Compare

fqotn'ota(s .



I shall m;ntion'a property of number theoretic theorenms .whichr
suggests that there 13 reason for regarding them as of particular
importance. ,

Suppose that we have soze axiometic system of a purely formal
nature. We do not interesi ourselves et all in interpretations for
the formulse of this system. They zre ‘to be regarded as of intererst
for themselves. An example of what is in mind is afforded by the
)

(
conversion calculua (% 1). Every sequence of symbols A conv B

-

where [ and :'B are well formed formulee, is a formuls of the
axiomatic system and is proweble if the W.F.F. /113 convertible to
E « The rules of converaion give us the rules of nrocedurs in this
axionatic system.

Now consider & new rule of procedure which is reputed to yield
only formulae provable in the original sense, Ye may ask ourselves

whether such a rule 1s valid. The statement that sueh a rule 1s

- valid wonld be nurber theoretic. To prove this let us take G5del

- representations for the formulae, and an enumeration of the provable

formulae; let (P(r) be the G. R. of the v th formulo in the enum—
sration. We may suppose ¢ (r) 1is primitive recursive if we do
not mind repetitions in the enumeration. Let ‘Zva) be the G. R.

of the \ th formula obtained by the new rule, then the statement

~ that this new rale is wvalid is equivelent to the sssertion of

() (Ts)[ $(r = 98]

(the domein of individusls being the natural numbers). It hes




‘been shown In 2 % that such statements are mumber theoretic.

It might piagsibly be argued that all theorems of mathesatics
ihick_x have any si@ificadce rheh taken sclone, are in effect gyntac—
tical theomm_ét this kind, stating the validity of certain 'derived
rules' of procedure. Without going so far es this I should say that
theoreas of this kind have an importance which makes it worth while

to give them special consideration. - '
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8 I_._qgic' formlse 7
¥e shall call & fomla [__ a w (of, if 1t is clear
7 that we are aoeaking of a H.F.I"., simply a ng;_) ir 1t has ‘the
' prupert:? that if H is & formmla such thet L [_F]) conv 2 then ﬂ |
is dusl. o | . |
| 'A- logic forzula gives us a mesns of satiai‘yihg ourselves ol)f' the
| troth of number theoretic theorems. For to each mmf:e: ,théoretic
prupositim there corresponds a W.F.F, M which 1s dual 1f and only
o the bropnsitiﬁn is true. HNow if L is a logic and L [ﬂ) conv
2 thenﬁ is dual and we inmow that the corresponding number theore—
| - tic proposition 13 true. Tt déss not follow that if [ 1s a logic
we can use. L to satisﬁr ourselves of the truth of any true number

theoretic theores.

I L is a ].ogic the set of formulae F] for which L [ﬁ) conv
2 will be called the extent of L .

Itmaybeprovedbytheuaeof(ﬂ), (E) p 7 , that there iz a
formuls X such that if _M_ hes & normal forn and no fres variables
and is not convertible to 2, At.ban X(?_”) conv 1, but if _{:ﬂ conv 2
toen K (M) conv 2. If L 1s a logte then M. R(L(%)) is also
2 logic)uhose extent 1s the sane as that of _L: » and has the property
that 1f A has no free veriables then {Xx . X[I:CX))]’ (R) 1s
alwa'y,s convertible to 1 or to 2 or else has no normsl form. 4
. logic with this property will be aaid to be standardized.

Ve shall say that a logle L 1s gt least as complete gs a
1ogic L 4f the ‘extent of L is & subset of the extent of é . The
“logie L' wm‘bew L if the extent of L is a



proper subset of ths extent of l__/ .

Buppose that we have &n effective set of rules by which we can
prove ‘fomlae to be duai; {.6. we have a sygfem of symbolic logle
in which the propositions proved are of the form that certain formu—
lse are dual. Then we can find a logic formula whose extent con-
sists of just those formulae which can be proved to be dual by the
rules; that 1s to sey that there is a rule for obtaining the logic

formmla from the gystem of symbolic 1031(:.. | In fact the system of

symbolic logic enebles uas to obtainm a uomputable function of posi-

T — R SN WD RN AN G Y N - S e A — — A G D G A AR vy omn o o=
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tive integers whose values run through the G3del representations of
thé formulee provable by means of the given rules. By the theorem
of equivalenéa of computable and A\~definable functions there is a
formula _I such that _J‘[l)) l’l'{z)7 . are the G. R. of these formu~
- lae, Now let

W =2 Ajv. G (Au. S(jlw),v) 1, 72)
then I assert that W( J) 1g a logic with the required ﬁropartiea.
The properties of * imply that (B C,1) s convertible to the
lesst positive integer h for which c( 4 ) conv 2 and has no normal
form if there is no such integer. Consequently (f’[g) 1, _'[) 2_)
is convertible to 21f C( W) conv 2 for some positive integer W ,
and has no normel form otherwise. That is to say that W (J, A)
conv 2 if and anl& A S(I(‘:], A conv 2, some h, l.e. if J(4)
conv A gome h. |

: , I
There is conversely a formula W such that if L is a loglc
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thzn.h/7!>) enumerstes the extent of L . For there is a formula @
such that (,D(_,_, )conir R if and’only if E{fj) is convertible
to 2 in less than A stepa. We then put

W' = Al form (¥(2, (ﬁ[)\x QL fm.,[wz %), ¥(5x)), w)))
of course W ( w(d) ) will mmlly be entirely di_fferent fronm _\_/
and W (W (L))frum L.

In the case where we have symbolic logic whose propssitions
can be 1nterpteted as number theoretic theorems, but are not express—
ed in the form of the duality of formulae we shall again have &
corresponding logic formula, but its relation tovthe syrbolic logic
will not be 80 simple. As an exnhple let us take the case that the
symbolic logic proves that certain primitive recursive functions
vﬁnish infinitely often. As waa shown in % 5 we can associate
with each such proposition =z W.F.,F. which is dual if and only if the
prupusitiqn is true. Hhﬁﬁ we replace the propositions of the sym-
bolic logic by theorema on the duality of formulae in this way our
previous argument applies, aﬁd we obtain a certain logic formulads
However, L: does not determine uniquely which are the propositions
proveble in the aymbolic logic; for it ié possible that’ EZ (%)
veuishes infinitely often' and * O, (%) vanishes infinitely often®
are both sssociated with ! A 1s dual?, and that the firat of these
prapoaitions is provable in the system, but the sccond not. WHow-
ever, 1r we suppose that the systen of symbolic logic is suffic-
iently powerful to be able to carry out the argument ‘on p. 15 then

this difficulty cannot arise. There is also tha possibility that
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expected to differ from P . To each symbolic logic C we can
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there may be formuilze Iin ihe extent of L_— with no propositiona of
the form ' §(x) van:‘.ahés infinit.el:; often' corresponding to them.
But to each such formula we can assign (by a different argumexi.t) &
pfopositioﬁ 7) of the symbolic logic which is the necessery and

suflficient condition for _f_:l_ to be dual. ¥With 7’ is associated (’n

_ ; / ‘
the “irst way) a formula E « HNow La can always be modified so that

its extent contains 'Bi/whenever it contains E -

¥e shall be interested principally !n ouesntions of completeﬁe&s.
Let us suppose that we have a cless of systems of symbolic logic the
propoaitiona of these systems belng expressed in a uniforn notation
and interpretable as number theoretic theorems; supnroide also there
13 & rule by which we can asaign to euch proposition 7) of the
notation & W.F.F. fly wnich 1s dual if and only 1f P 1s true, and

that to each ®.F.F. A we can azsign a proposition Pg ¥ieh s the

necessary and sufficient condition for A to be dual. ’/35, is to be

=P

‘ /
as3ign two logic formulse [. and —[:C . A formila ﬁ belonzs +3 the

A / |
extent of _l:C if Pq is provable in C , while the extent of L ¢ }
i - |

consists of all B Pwhere P 1s pro-‘mble in C . Let us say that

—

the class of symbolic logics is complate i each true proposition
is ﬁrmble in one ol them: let us also ssy that = cless of logic
formulae is complete if the set theoretic sum of the extents of
these logics includes all ‘dual fdrmula.e. I »aa:sert that & necessary
conditioc for e class of symbolic loglcs C to be ¢omplete is that

the class of logics _L_. Cbe couplete, while & sufficlent condition
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) is that the class of logics L—- C/ be conplete. Let us supnose that
the clasa of symbolic logics is complete; consider ?ﬁ vhere ﬁ ia
arbitrery tut dusl. It mst be provable in one of the sysiems, C
m.:r. fa therefore belongs to tre extent of L c* 18+ the cless of
logzics L:C is complete. Now suppose ‘he claas of logics _/__,C/ is
complete., Let T be an arbitrary true propesition of the notationg
B'P mst belong to the extent of some L. c/ , and this means that -p
-~ s provable in C . |
‘We shall say that a single logic I‘omla L. is complete if its
extert includes all dual forml&e; thet is ‘o smay that ‘it iz dusl Comrlei e
if it enables us to prove every true number theorciic theorem. It
is & consequence of the theoren of Gﬁdel (1f suitably extendedb) that
no logic formula is complefce » and thisb also follows from (C) p. 6
or from the results of Turing {1] é 8, when taxen in conjunction
- with é 3 of the present paper. The idea of completeness of a logic
formula wi].l not therefore be wvery important, although it s vseful
to have a term for it. ;
Suppose \/ is a ¥.F,F. such that _\_/ [ “) is a loglc for each
positive ianteger 4 . The Iormulae of the extent of :/( h4) are
- . enumerated by W(:/( g)) » and the combined extents of these
| logies by A, WL Y[ ¥z, 0Ny, B (sr)) . Putting
T = Ay W/(Ar W(y(&(z1), ¥(5,r)))
™ \/) 1s a logic whose extent is the com ‘bined extent of Y(’l),
Y(2), N(3) 5.

To each W, F F. L. we can assign a W.F.F. \/(L) such that the
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necessary ani sufficienf, condition for L~ to be a logic fﬁrmula ia
that V (L) bve dual. Let Nm be a K.F.F. which emumerates all
formulae with normal forms. Then the condition that L be a logic
i3 that Z:/Nnv(r), $)  coav 2 for all positive integers ¥, S ,
fee. taat Aa. L ( Nw (B(2,0)) 8(35,4))  be dusl. We

may therefore put

V = Nla, £(Nu.,(a—(g«))/ B3 <))
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1. Ordinels.
- Te begin our treatment of ordinals with some brief definitions
t‘m\the: Cantor theory of ordinals, ut for *the und.rstanding of
some of the proofs a grester emount of the Cantor theory is necessary
than is here set out. |

Suppose we have a class determined by the propositional function
3(1\) and & relstion Or (¥, Y) ordering tuem, 1.e. satisfying

G(%y) ¥&(y,2) 2 &(*2) |

Dr)¥IY) > &Glxy) v G(y,x) v x=y i

G(%Y) 2 D)+ DY) S ii;J

~J G‘(X) 7() ‘ (‘V
Ths cless defined by P(x) 1s then called 2 series with the ordering

(7.3

relation (r(%,y) « The series is said to be well ordered and the
" ordering relation is called an grdinel if e@m sub-series which 1s
not void has a first term, f.e. if
(D)@ (0'(1) * (1)(D'(x)> D(+))
DE=)N[ D) (D> &(zy)vay)]) TR
The condition (7.2) is equivalent to another, more suitabls for
our purposes, namely the condition that every descending subsequence
must terminate; formally
(N { D'(x) > BLxj~+ (V) (DY) > G, ¥)Y 260 (~D1H)  tr.s
The ordering relation Gr (%) is said to be similar to G'(%,Y)
Af there 18 a one-one correspondence between the series transforming

the one relation in_to the other. Thia is best expresaed formally
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Ord‘a-ring, relations aré regarded as belonging to the same ordinal if
and ohly if they are similar,

We wish to give names to all the ordinals, but this will not
~ be possible until they have been restricted in some way; the class
of ordinals as at present defined is more ‘than enumersble. The res-
trictions we actually put are theses D (X) 1s to imply that X
1sa positive integer; J (%) and G (*,Y) are to be computable
properties. Both of the propositional functions D (%), G(X,Y)
can then be described by means of a single W.F.F. & with the proper—

tiea.

.Q( )conv 4 unless both l(‘“) and :D[h) are true,
0 (w,m)wonv 8 11 D(m) 1s true, |

__Q,[mih)wmv 2 if 3)(‘«) s W), G(m "") , (M= 1) are true,
_9_(‘2\’,5) conv 1 if D(w) , Dlu) NG (1) ,fu[uw_.h), are truse,

Owing to the conditfons to which D (¥), G (%,Y) are subjected O
must further satisfy

(a) &f .Q.[M M) is convertible to 1 or 2 then _Q.[“‘ “‘)and
- Q (n, M) are convertible to 3,

(b) ir Q(m 2Y) and Q (W, hjm'e convertible to & then Q.["‘, u)
is convertible to 1, 2, or §, '

(@) 1r a/ w,n) is convertible to 1 then LQ(u,m)is convertible

to 2 and conversely,

(a) 1r :g.("_‘_‘)h) | _.Q.( _’B)are convertible to 1 then Q. (h ’P)
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is also, |
(e) there 1z no sequence M, ,m, ... such that __Q.[g_ni+1) we;)
conv 2 for each positive integer ¢ ,
() 2 (wm, g) is always convertible to 1, 2, 5, or 4.

If a forunla.gé'a&tlafiea'thasa conditlons then there are corr#s-
ponding propositional functions-’:D(fJ > GF(*,\Q) « ¥e ghall there-
fore say that Q is an ordinal forsmla if it satisfies the condi-
tins {a) - (£). It will be seen that & consequence of this defini-
tion is that Db s an ordinal formla. It represents the ordinal
W « The definition we have given dées not pretend to have virtues
~guch as elegance or convenlence. It has been introduced rather to
fix our ideas and to show how 1t is possible in principle to describe
ordinals by means of well formed formulase. The definitions could
be modified in & number of ways. Some such‘mndificatians are quite
trivial;‘they are typifiéd’by modifications such as changing the
numbers 1,2,5,4; used in the definition to sonme others. Two such
definitions will be said to be equivalent; in general we shall say
that two definitions are equivalent if there are W.F.F. 7 , |
such that if f? is an ordinal formula under one dafinitien and
represents the ordinal ¥ , then 1 (A ) 18 an ordinal formila
under the second definition end represents the same ordinal, and
conversely if f? Iis an ordinal formuls under the second definition
mpresentiﬁg oK , then :/_( A ’) repregenta % under the first de—
finition. Beaides definitlons equivalent in this sense to our

original definition thers are a number of other possibilities open.



Suppose for instance that we do not require :D(*Q and éi[*;‘f)
to be computable, but only that D(x) eand & (X,\/)ﬁ'—,x 4\/ be
axiomutic.ls This lesds to . definition of ordinal formuls which
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To rcquire Gf[*;ﬂ) to be axlomatic would amount to requiring éi(*,)j
computable on account of (7.1) 0 .
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X% on tae other bend 1f D(X) be axiomatic and & (%, V) computable
i the modified sense that there i3 2 rule for determining whether

G{$)y) 1s true which leads to a definite result in all cases
where D(*) and D(Y) are true, the corresponding definition of
ordinal formule iz ecuivelent to our - efinition. To give the proof
would be too much of a digresaion. Probably a number of other
equivalencea of this kind hold.

There are numerous possibilities, and little to puide us as to which
definition should be chosen. No one of thém could well be described
as 'wrong'; some of them may be found more valuable in applicstions
than others, and the particular choice we huve mad§ has been partly
dater@lned b& the apolications we have in view. In the case of
theorama'of a aegatife character one would wish to prove them for
ezch one of the possible dafinitions of *ordinal formmlia', This
program could I think bebcarried through for the negative resvlts

of Q,@, 10,

Before leaving the subject of possible ways of deflning ordinal
formulée 1 must méntion snother definitioh duve to Church and Kleene
{Chureci: snd Kleene (1). e can make use of this definition in
consiructing ordinal iogics, ut itris more‘convenient to use a
slightly diferent definition whicx is equivalent (iﬁ the sense
‘described on p. 29 ) to the Church-Kleene definition as modified in

Church [4].
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Introduce the abbreviations
U—> Nopr. @ Ny, )L-(\[[I)x)))

Suc =7 Nawfx f— (a (e {,%
e define first a partial ordering relation '/ ! which holds betwsen
certain palrs of ¥.F.F. (conditions (1) - (5)).

(1) If [ conv B then A< C implies B C and C< A
iaplies C < B . .

(2) A < Sue (A) |

~ (3) For any positive integers Mo /\uYhL. R(n) < Aujr. Rlim)

tmplies Nej%. Rle) < Augk. w (),

() 1rt < B anda BL L then ALLC . (1) - (4) are
' required for any w.r.5.A,8,C, Auyl%._(@ .

(5) The relation f} { B holds only when compelled to do so
by (1) - (4). |
We define C-X ordinal fomxlae b; the conditions (6) - (10).

(6) 12 Al conv B and A 15 a C-X ordinal formila then B
is & C-K ordinal formula.

{(7) U is a C-K ordinal formula. _

(8) It A 1s & C-X ordinal formile then Jic (A ) 1s a C-X
ordinel formula.

(9) ¢ Aufx. R(w) 13 a C-K ordinal formula and Xa.{wc. R(x) <
<N R (S(2)) for each posttive integer M then Nefr. «(R)
1s a C-K ordinal formula.

(10) A formla is a CX ordirel formuls only if compelled %o
be so by (8) - {2).
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The representation of ordinals by formulas is described by {1l) -
(15). -

{(i1) If f} cony B ana ﬁ_ represents o/ then _B represents

{1z) v represents l.

(15) Ir f) represents K then Jue [_ﬂ) represents X+ .

(14) ‘If Auvlﬁ- B [ 2‘) represents & w for each positive
intager A then (\a’/x. w( R ) ~y Tepresents the upper bound of the
sequence 011,0(2) Ae o n o s | |

{15) A4 formula reprasents an ordinal only when compelled to
do so by (11) - (14). _

Ve denotl.a any ordinal represented by ﬁ | byf 7 without prejudice
to the paﬁsibility that more than one ordinal may —be represented by
ﬂ . Fe shall writeﬁé ;B ‘tomeanf( _3_ | orﬂ conv 3 .

I,ﬁ proving propertiés of C-K ordinal formulae we shall of ten
use a kind of analogue of the principle of tranafinite induction.
IfCP is sone property and we have

(a) 1t O convrB and lP[ﬂ ‘t.hen CP{B)

= (U) .

() 1= @(f) then p(Juc (R)) -

(Q) 1¢ LP(Au{x. X (v) ) ma Auw)w. R(%) < )\k'lx Q(W‘*))for each
positive integer b tuen (p [ f\uYLx u( )
then ff __) for each C-K ordinal formuls f’ To prove the validity
of this principle we have only to observe that the class of formulae

A satisfying ({)[ ﬂ) is one of those of which the class of C-K

—
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ordinal fnmiu was defined to be the smallest. ¥e can use this
principle to help us prove:-
| {1) Bvery CX ordinsl formula is convertible to the form
(\u‘lx. B where ;_B is in normal form. |
{11) There is s method by which one can determine of any
C-X ordinal formila into which of the forms v, Suc (Auge. ’_B)/ Awpx. w(R)
where b. is free in B} it is convert ible, and to determine _:B » B »
In each case B , R ere wique apart from conversious. |

—
—

— ¥

{111) 1 E represents any ordinal EH is unique. If

extst and 4 B thm%(i-,z. - | B
(iv) 1f # , B, C are C-K ordinal formulae and 38

{ R then either < B ,'_BA_(:,_'or_Bconv_C_'.

(v)nromnaﬁ;acqxordmal formila 1f

w V<R
(B) It Aud. w(R) A and n is a positive inte-
ger, then Au{x@(&)( ?\u‘l$.8[f(ﬂ)> .

(C) For any two MF.F. B ,C with BL A , (<A

B

N

wo have BLC , C & B or @ conv C , but never B<B.
(D} There is no infinite secuence 31,_:'_31_ s v s .

for which 3\,< @Y_,<ﬁ each V" ,
| (vi) There 1s & formila M such that if B 15 a C-X ordinal
forwmla then H ( _H_ ) is ari ordinel formmla representing the same
ordinal. H () 1s not an ordinal formula unless 7 1s a C- ordinsl
formula, _ 7 v

. Proof of (1). Take Ce(ﬂ ) to be ! B is convertible tp the form
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7 AL.VI* } where B is in normal foru'. The conditions (a) s (B)

are trivisl. For (¢) suppose _H lconv (\a/ x. 3 where. _23 {3 in

normal form, then Jue (_I'}’) com,Xu,[X.f(_B)- and {(5) is in

normal form. For (d) we have only to show tnat « (8 ) ha3s & normal

form, i.e. that?j has a normsl form, which is true aincaf(l) has

a nornal form. |

| Proo® of (11). Since by hypothesiz the “ormula is a C—K,anainal

formula we have only to perform conversionsron 1t until 1% is in

oce of the forms described. It is not possible to can_ﬁrﬁ it into

two of these three forms. For supnose (\b._’h\- ’F (_H(“J VL’ ’\)) conv

(\k‘*y,_ u(ﬂ) anc is & C-K ordinal formula; it is thef;;fore conver—

tible to tue form Awlt. B where B 1s in normal form. But tue

normal form of }\k . ( @) can be obtained by conversions or _‘R »

and that of r\u{%. ‘F(ﬂ (u) 1‘) X)) by conversions on ﬂ/a/ Vl) X}

(es follows from Church and Hosser (1] theoren 2) but this would imply

thet the forrmlam in guestion had two normal forms, one of Zorm (\uyl X. u[é‘ ) '
and one of form {\u.{ x. f(C ) , which is impossible. Or suppose [/

conv )\L#x, u (8) shere (B is &« well formed forﬁula with U as a free

variable. Te may suppose ’7_{ is in normal form. Now U 1s Xu.{%-k(:\\/. ,1(7’(.":%)))
By (A) p. 6. R  is identical with Ay Ay (I,?ﬂ)) vhich

does not have W as a free variable. It now only remeins to show
thatif'&c{,\u{x _B) conv fuc-[(\aylx.;e’} and /\uylx,a(j’j’
conv"(\hyl\.u[B) thengconv;!andfmv R, |
1 ‘&{((\u’lx. [5_) conv &c(Au{%._B’)

then f\u.’h.,f(ﬁ) conv  Audx. £ (B7)




but both of these forrmlae can be brought to normal forz by conver-
/ /
sions on Z)’ * B and therefore § conv __/3 « The szne ergument

—

applies in the case that P\tc'lx-u(f) conv )\let.u[f/J .

Proof of (1ii). To prove the first half take @ (A ) to be

' EH is uniquet. {7.5) (&) i3z 4rivial and (b) follows from the fact
that U 1is not convertible either to the forn Jue (A ) or to
}\u¥\g_ w ( f) where _7_? has (. as a free variable. For (c): Suc Cﬁ)
is not convertible to the form (\uY/ . u CCA_’) 3 the possibility of
Sue ( ﬁ) representing tn ordinal on scsount of (12) or (14) is
therefore eliminated. By (13) Juc { ﬂ) represents o ,-*1 if ﬂ /
represents 6(, and ‘Ykﬁ (ﬁ) conv  Juc (ﬁ(/ « If we sup-
pose f represents: & , then _H s f}’ being C-K ordinal formulae
are convertibie to the forms P\h.{% __3 ! » )\ uvlqt. 3 / but
then by (ii) B conv},i.e. f_? conv ’ﬁ ’ , and therofofe by tie hypo-
thesis CP[ﬁz = o(/". Theg ES’uc[B) 2 d’-f 1 is unique. For (d):
Au ’(s.u[_ﬁ) ' 1s not convertible to the form Jac (ﬁ) or to
U ifg has W as & free variable. If r\u'l&.b.(__W) repm-‘
sents an ordinal it is therefore in virtue of (14)’ possibly together
with (11). HNow if /\ule.uﬂ?)cm A ule. «(R') ten R
conv gl, so that the secuence X‘t{* . Zq[l) ’ (\uy[\ﬁ.?[&), « oo
in (14) is unique apart from conversions. Then by the induction hypo-

thesiz +he sequence X {s unique. The only

1 » K’. J d} P ® »
oréinal that is represented by )\ u{\t VY (f) is the upper bound
of this sequence which is unique. |

For the s:econd half we use a type of argument rather different
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from our vtrausf inite induction principie. The formulae;_B for. which
R< B form the smallest class for which

Suec éﬂ ) belongs to the class.

If C belongs to the class then Juc () belongs to it.

If )\u{*/\ _7_2 [@) belonys to the class end }\u{% 73(.‘1‘) < r\u/x.__(/?/éﬁj

wiere k. , h are some positive integers then )uYL'ﬁ . U.(B) belorgs

to it.
/
If C velongs to tae class end £ conv then L belongs to

it.

It will suffice to orove that the class of formulné B for which

——

either ;Bdoes not exist or _—_ £ _:_ satisfies the conditions

B8

i)

(7.6). Now

“"Succm Septl7 S

—_ S«CCC) > E EH if _C_ is in the class.

| If — A " (R(‘_‘} does not exist then — Nwlh. u (R) does not

exist, and therefore ,Xu,¥1\'. u (R) is in the class, If h.?lﬁ ‘?[u

—

exists and is greater than :'H and r\u.{,‘rx Q[h Au vb& R

then

g —
—

"‘Mh.u(ﬁ) ? :—,\u“.ﬂlg) ke —nA
g0 that }»wi*. W [_B)belongs,to the class.

Proof of (iv). We prove this by inductlion with respect to ﬂ .

Take ([f1) to be *whenever B L A sna 4P then B L C  or
€L B orBeconv C's (U] follows from the fact that we

never have B U . Yf we nave $(A) ana B £ Juc () then
either BL R or B conv A 5 for ve can find D so that BL D ,

—
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and D 4 Juc (ﬂ) can be proved without appesiin. eitner to (1)
or (5); (4) does not apply so we must have 3 conv ﬂ Then if
B £ Suc (ﬁ ) and C < Suc (ﬁ ) we have four possibilitips

_3 coan»,gconv kil
B B, C < 0
B <‘ﬁ,gconv&
B LA ,C & B

In the first case 3 conv g , in the second € < B » in the third
§ < C and in the fourth the induction hypothesis applies.

Now suppose that )\u{%.f(‘c) is a C-K ordinel formuls,
A “le- B &)< >\‘*{7‘- z“(f[‘-‘))and ?(_R (u )) s for each positive inte-
ger h , and A conv ,\4%.« (B) . Then ir BL A this mesns that
3< Au\l'ﬁ R(e) for sowe h ; if e have also C <L P then
34 Au{ R[k/) c < (\u‘(. Q [n') soce h’  Thna for these
® , € the required result follows fron ¢ ( A“YH R/n //

Proof of {v). The conditions (C), (D) imply that the cles: ses

of interconvertible formulse B 3 < a are well—order-nr‘ by the
relation ' { !'. Ve prove (v) by (vaz‘d.inar;.') transfinite induction
- with respect to the order type &K o the series formed b these.classesy
(o 45 in fact the solution of the equation 1+ aa — q but we o
not need this). TYe supnose then tast (v) is true for all-arfier types
less than ® . If _l_,:h< E then _lf satisfies the conditilons of (v)

and tvhe corresponding order type 1ls smzller: ‘_L-:“ is t‘rserei‘ore a C-K
ordinsl formula. Tzis expresses all consesuences of ‘he induction

hypothesis that »e need, There are three cases to consigder.

(x) o= O
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(z) X is of neither of the forms (x}, {y).
Tn case (x) we must have [/ conv U on account of {A). In case (y)
taere is a formule J such that DA ,ana B4D whenever
B4 A . The relation D< fl mmst hold in virtue either of (1),
(2), (3), or {4). It cannot be in virtue of (4) »for then there
would be _3 , 8468 ,D {73 contrary to (C) taken in conjunc-
tion with the definition of D . If it is In virtue of (3} then

iz the upper bound of & sequence O , &_ .. . of ardinals, which

1 2
are increasing on nccount of §ii) and t.he conditions A\ 7/* (/\7[ “) L
[\k{ R(Y(y (.5)- This 1s inconsistent with ol = ﬁ—* 1 . Thia
means that (2) applies {after we have eliminated(l) by suitable
conversions on ,;f_) ) and we see that /7 conv Jue [_’-:D)j' but
since 1)<fl » D 15 a CX ordinal forsula, and [1 must therefore
be a C-K ordinal fom by ). Now fake case {(s). It 1s imposaible
that £ be of form ‘Ltc (D) , for then we should have B<4D
whenever B (- ﬂ vhich would mean that we had case (r). VSince
UL B there must be an [ such that £ < fi 1s demonstrable
either by (2) or by (8) (after a possible c‘nnverslon on At
must of course be demonstrable by (3). Then A 1s of form kuvix W (R
By (3), (B) we see that Au/k. R/“)( 1 z.or-mnch positive
integer A ; each AAYZ (/{[ ) is therefore a C-X ordinal for-
wula. Applying (9), (B) we see that Al is a C-K ordinal formula.

Progf of vi. To prove the first half it suffices to find a

method whereby from 2 C-XK ordinal formula _/_7 we can find the
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corresponding ordinal formila .S_Z . For then there is = formula Hl
such that Hl (a) conv. P oA & 1is the G.R. of A and P tuat of
_g. . A 13 then to be Jefined by

| H—> Na. form CHl(Gv(m)))
The methol for find inr'.Q nay be replacad by a zethod of fin” Ang
g.[i_-n , 5) ziven ﬁ and any two positive integers M , b . Te
shall arrange the method so ‘t'mztrwhenever ﬁ i3 not an‘ordine.l fcff-
mule either the calculation of the values do‘es’, not comes to gn end
or else the. values are not consistent with .__Q beinz an ordinﬁl
formula. In this wer we can ';)rbve the second nalf of (vi).

Let LS be a formlae such that ‘LS( _lq) enumeratez the classes
of formulae'3 R ﬁ £ E {(i.e. 1f __B'< A there i3 one and only
one positive integér h for which LS/ﬂ, b») | conv E ) Then the

rule for finding the value of -Q (‘1‘, ‘3) is as followsi-

First deltemine whefher. ,Ué @ and whe‘c-her _/2 43 convertible
to the form r [‘c"‘ U) 13 comes to an end if [l 1s a C-x

ordinal ;o*mula. ,

Ir Aeconv (-&“’ U) and either WM > ¥r+7 or W >r+]]
then the value 15 4. If ML h £ v+ 1 the value 43 2. Ir AL im ¢ r+1
the value is 1, If m= U & v+ 7T the value is 3.

Ir ﬁ is not convertible to vthis {form we deternins vhether
etther & or Ls( A, m) 18 convertible to the form A u{*. u (R)
© and if either of them is e verify that Xu{'(\ R(w) ¢ f\ufx. 'Il[&(g))
Ve shall eventually comes to an affirmstive answer if _1_7 i5 a C-K

ordinal formuls.
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Having checked this we determine of & , W mthér LS(ﬁ,g.) 4 Ls(ﬁl a)

Ls(8;1) L LS(B, w) s or M= , and the valus 13 to be
accordingly 1, 2, or 5.

It ﬁ is & C-K ordinal forﬁnla this process certainly comes to an end.
To see that the values so calculated correspond to an ordinal for-
'nnlq, end one rapresantihg ER first observe that this is so vhen
= iz finite. In the other case (111), (iv) show that = ,3 r’etér-—
m’a@a s one-one correspondence between the ordinals ﬁ, 14 ﬁ < EH
and the classes of interconvertible formulae ._B ,f_B {A. 1 ve teke
G(w,n) tove Le(R wm )L Ls(A, n) we see that @ (W, wits
tue ordering mlation of a series of order typel“ - ﬂ_und on the other
15 the order type 1:]3 where 1+/s'- EH but f = = n  since =
15 Mfinite. : - -
hand that the values of _Q_/m 4] are related to &, «/ as on p. 23,
To prove the second hsalf suppose 12 is not e C-K ordinal formula,
Then one of the couditions (A)-(D) in (v) must not be satisfied.

' If (A) is not satisfied we shall not obtain a result even in the
caleulation of @ ( 11 ) . If (B) is not satisfied, for some
positive integers (/7 N CV we shsll have LSCﬂ,:)) conv _
t\'vfr\( uLR) but not \u{ﬁ R(‘l/) L 'l (R[S[‘V)) + Then
the process of calculating -Q. [’P ﬂ(/) will not coue to an end. In
case of faﬂ.um of (C)} or (D) the values of ._@ (’,‘1, _‘1) may all be
calculable but conditien (b), (d), ‘bor (s) p. 29, 30 will be vibl_.a.tad.

Thus 1£ P 1s not a C-K ordinel formula then H (f) 1s not an or-




dinal formaln.

I prosose now to define three formulae Sum, dun , IKYL of impore
tance ir connesction with ordinal fomlé.é. A3 they are compara-
tively simple they will for once be ziven almost in fulls
Tse formula ua, {s one with the property that Ua ( ) is conver-
tible to the formula representing the largest odd integer dividing
M t it is not given in full. P is the "bfrédecessoni»funé';éiidﬁ}?(f{f‘}cdﬁv w
AL — ’\T”“/ . ?( (\&U.D*, 8,(U;u)) Auv, u(lj,cr)) X, \/)
 HE— N\ e ’P(;« (Aauu’.z,(u; X(u))) f\u,U'.V‘(_T)(,\)) 1, 2_))
B —> Artr'aa’ x. AL ()\f J[G,Q} u”/‘/,“,/ %, &)
' /
Sum = Ao’ pg, . Bk () HE(P), Hicy), AR, Pl o (1))
| 1), AL(yar (HECP), HE(3)))

div — Az g { dab. Bl (=/a), 2(b), Uy (p), Uy (y), AL (DE(5 8) +
 +Dk(ka),Dt(s,b), 2(a, Ug(), Uy 4))))} (B2, p), B0z, 4)

hf = z\w'cupfy. AL(N ""(“‘:'P; w(a, %ﬁ)mhv),#)

- The essentlal properties of these formulae are Zescribed by
Hl(lr"ljm, 1 ) conv m | HLCZI/ 4, 4) conv 4
2 y Z
| H‘F[a'ﬂ) conv M H‘F("zl“"l) conv

/
3”" (‘g‘/-_o: ,Q/Q: ?(_) conv 4 unless both g- (9“;5' ) conv 3
' WA '
and -9 (9. , & ) conv 3 in which case it is

convertible to X .
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e Q » Q /are ordinal formulae representing X , /5 resnectively
then Juwm (2 _Q.’) i8 an ordinal formule representing ol—f/! .

If z is & .I‘.x. emunerating a sequence ofmdina.l formulae repre—
sen*ing o(l, o(z, « o o3 then OAM/Z) is &n_ordinal formula
representing the infinite sum « "f'“.._ 013 ese o If L2 1a an ordiml
formuls representing ® then /“Vf/—_g enumerates a saquence of
oﬂdinal formalee representing sll the ordinals les3 than X without
repetition&.

To prove ‘that there %8 no general method for deteﬁihing of a
formls ‘whether it 13 an ordinal fom}.a we use an argament aiin
to that leading to the Burali-Forti paradox, but the emphasis and
the conclusion are different. Let us suppose that such an algorithm
18 available. This ensbles us to obtaln & recursive enumeration
;Q_J ,Qz, . . . of the ordinal formulse in normal form. There is &
formila Z such that _Z('_n) comr_gh; now it (__Z) represents
an ordinal greater than any represented by an .Q.k s 2nd hes there—
fore bee: onmitted Srom tie enumerstion.

This ergumont proves more +f1an was originelly asserted. In
fact it »roves that 1f we tate any class Iz of ordinal formilse in
normsl form, such that if ﬁ is any ordinsl formmle then there is
a formuls in E repreasemtiner tne sawe orilna. as ﬁ » tnen there is
no method whereby one can tell whether a W.F.F. ns no*':nal forz be-

locgs to £ .

[ S
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8, Ordinsl logics.

n ordinal logic is a W.F.F. /A such that /| [g) 1s a logic
formula whenever 0 1s an ordinal forwula.

This definition is intendsd to bring under one heading s num-
bar of ways of constructing logics which have 'fecently been pro-
posed or are suggested by recent advences. In this section I pro-
pose to show how to obtain sowe of these ordinal logics.

E’mppdae we have & class \A/ of logical systems. The g mbols
used in each of these systems are the same, and a class ol sequences
6 syubols called 'formulae' 1s defined, independently of the par—
ticular system in W . The rules of procedure of a system  dcfine
an axiomstic subset of the formulae, they are to be demcribed as
the 'provable fcrﬁnlaa of C *. Suppose fm;ther tﬁat we hnve &
method whereby, from any system of C of W we can obtain & new
system (', also in W/, and such that the set of provable formilse
of €' include the provable formulse of C (we shall be most inter-
ested in the case where they are included as a proper subset.) It
1s to be understood that this 'method! {8 an effective procedure
for obtaining the rule.s'_of procedure of ( ‘I from those of C .

Sup-ose that to certain of the formulae of W we make correspond
‘mumber theoretic theorems: by modifying the definition of formula
we may suppose that this is done for all formulas. vl!e shall say
that one of the systems C 1s valld if the ‘prombility oi‘ a formu-
la in  implies the truth of the corre‘sponii.ng nunber theoretic

v 1 | '
theorem. Now let the relation of C to C be such that the
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o /
valiiity ol C ixolies the vali2ity of €, and let thew: be & velifd

ayaten C in \A/ « Flpa'ly supnhose that given any computarle seuence

» C

2 2 T e ol systens in W the tlimit systen? in which & Tor-

1
mule 18 provable 17 and only if it 1s provcble in one of the srstens

C J alzo belonzs %o W » These 1limit systens are to be regard 2,

‘not as 11mctions of tre sequence given in extension, but as functions

of the rules of formation of their tems. & ssnuence yiven in cxten-
sloc may be deacribed by verious rules of formation, sani there will ke

several corresponding limit systens. Zach of these nay be described as

& lindt syaterx of *he secuence.

Under theze circu:f;stmces Y6 ey const: Lﬂct an ordinal logle. Iet
us asgociste poaitive integers with the systems, in auch‘a vor that
4o each co“re'*sponf s & positive integer .MC'- y BRI M C complctely
deseribes the ruies of procedurs of C . Then there 13 a VuF.r. // »
such that M (MC) ‘conv MC’ Zfor zack C 4n W |, and thers 13 a
?,'.f'.F @ such that i :D( r) conv IMC for each positive integzr
r then @(:D) conv W\C wiere C is a limit grstem of CJ » C,_ »
v e v oa ?"i“r_h gacs grsten C of W it s possible to asor:ia't»c—é logic |
forrmilu EC ¢ tie reletion betveen irer is that if & 1s s Cormlz of
\A/ cnd the nunber theoretic theorsn correspondin: to G {aszumed ex-
preszed in the conversion celeculvs form) asserts. thed } is qual,
then [: ( 13) coxv & 1f and only i1f. § is provadle in C . Tiere
will be a ¥, ‘.I* G auch that G(IM« ) conv EC for each C of W .,
Put

= Ao & (a0, w )
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I assert that V(B )is a logic formila for each C-K ordinal formila
A, and that 1f ALB then M (B) is more complete than N (@),
provided that there mre formulse provable in C bt not in C for
egéh velid L ot W, -

To prove this we shell show that to each C-K ordinal formula

there corresponds 2 unique system C[ .&J such that

0 BIBK,m ) cav m,
and that 1t further satisfiss ’
(14) CL U] 4s a 1mit system of Co' G-
(113) CLSuc (B) ]  4a (C[FJJ)
(1v) C'[/\u %. 'A(jSn a limit system of C[Aa?l% , 'R(l)j
CL(\u‘J R(Z)j,...., ' _
A amadefe. u(R) veing assused to be C-X ordinal formalae.
Trne uniqueness of the system follows from the fact that ch determines
C completely. Let us try to ,'prm'e the existence of C[ A :] for each C-K
‘ordinal formula F . Asv we have seen (p.53 1t suffices to prove
(a) C [ U] extsts,
() 12 C[B] exista then CE.Cu-c (8)] extats,
(c) 3£ CL,\u’Lg Ri(1)]» C[Aufx.B(2)], - - - oxtat tuen
C]e [\u-{% w(R )Je:d.sta.
Proof of . ‘ »
{)\\[I_/l(\[ [E, EACO'))}(‘E')  couv ﬁ[-“-‘c,) conv ﬂﬂ(,o,
for all positive integers M , and therefore by the definition of ()
there 1s a system, waich ve will cell ( [ 0], and wntch 1s a 1imtt

/ /
systen of Ca ’ Co y » = » y satisfying
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O(M. B %) cw  w ory3
But aa the other hand - ,
U(B K, me,) cmw © (ay. K(VLE, 4,,)
Thia proves {a) and izicidantally (i) :
Proof _of {b).
.E-.c,éﬂl__@’/_ff'tg(,)mv ’/\(ﬁ[_@, 5,”_"‘(,,7)
oony K/'-CE a1 )

conv adl (CLH])
Hence C[fuc(ﬂ)] exists and is given by (1i1).

gggof of {c).
{_{A"’f Q}{@ K im )}(“)canv {r\u'L\L ® (")}(@ H, m o)
o MC[ Aupx. R ()]
by hypothesis. Consequently by the definitlon of @ there oxiats
C which 1s a limit system of CLAu,lv- "3(1)] C[\u ‘R(J
and satisfies

@({X ‘L‘& (A’}(@K t«[ ' conv M.

¥e define C[’\-“ X. L (q) to be this C . ¥We then have {iv) and

{Au, %, u(ﬂ }(@h 1“4(, ) conv @ ({’\“f% Q}(@ l’,_( )}

| canv _C[(\lg*'ﬂ u(,ﬂ)_]
This r..onpletea the proof of the properties (1) - {iv). From

(11), (14.1), (iv} ﬂm facts that C o8 valid and that C ! 43 valid
when ( i3 valid wm infer that C [ HJ is valid for each C-X
ordinal foruu}.a H t aleo tnat there are more formlae provable in
CL@] than in C[ £ wnen A D . The truth of our asser-

tions regarding N follows now in view of (1) and the definitions
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of _N -and é’ .
We cannot conclude that _/\_/ is an ordinal logic, since the formulae
f_:} were C-K ordinal fonmlaa; but the formula // enebles us to ob-
tain an ordinal logic from N . By the use of the formula & we
obtain & formmla Th/ such that 1f ﬁ has a nomﬂ form then Tu- [ _/_7 )
enumerates the G.Ra3, of the formulee into which ﬁ ~ is convertible.
Also there is a formule (K such that 1f A 1s the G.R. of a formula
H(@) then Ck(é) conv B , but otherwise C/([l‘) coov U .
Since H(B) 1s an ordinal formila only if B 1s a CX ordinal for-
mmla, Ck [ Tk-[g-/ h )) is & C-X ordinsl formula for each ordinal
formla 2 and integer b . For many ordinal formlse 1t will be
convertible to U , but for suitable 2 , i it will be convertible
to any given C~K ordinal formmls., If we put : |
A — Auwa. T\[ hY. !\_[ (C/((T“- (v “))) “)

;/_X. will be the requimd ordinai logic. In fact on account of the
properties of [ , é\,[:_Q./ Q’) will be convertible to £ i and

only if there is a positive integer /A such that

N{Ck(Tu(2,1)),8) eamve

If -_Q_- conv H» (_E) there will be an Integer h such that
Ck{Tul —9, n )) comv B, and then

N(Ck(Tu(2,0),8) coov N(3,8)]

For a.ny:n‘/) Ck(T“[g/-"-‘)) is convertible to U or to sone

3 where .._(_2 conv H (_B) « Thus /\ (__Q_/ _/_7/ conv 2 if__g conv

H (E) andi\{(B/ B) conv 2 or if _{X(UJ __ﬂ) conv 2, but not
in any other case, ‘ '



- 4D

We mey now specialize and consider particular classes W/  of
systems. First let us try to construct the ordinal logic described
roughly in the introductidn. For W we take the class of 3ystens
arising from the system of Principia H&'chematicale by mdjoining to
“hitehead and Russell [1]. The axioms and rules of procedure of

& similar system P will be found in & convenient form in Gidel [1].
I 53hall follow Gddel. The aymbols for the natural numbers in P are

0, f0, ff0,...F0.... Variables with the suffix o' stand for
naturaf numbera.

it axiomatic (in the sense riescr‘l.bad on p.10 ) aeta of axim”»
St ke h = e e S e

It is sometimas regarded as necessary that the set of axioms used
be computable, the intention being that § should be possible to verify

a forsula reputed to be an axiom whether it really is so. Te can
obtain the same effect with axiomatic sets of axioms in this way. In
the rules of procedure describing which are the axioms we incorporste
a method of enumerating them, and we also introduce a rule that in the
main part of the deduction whenever we write down an sxiom &3 such we must
also write down its position in the enumerstion. It 18 possible to
verify whether this has been done correctly.

—————--—-.———-—-—;————-.—-——-——-—-——-—————-——--——--.———.—-——-

18 4 relation F(w, ---) my) s primitiva recursive 17 it is the
necsssary and sufficient condition for the wanishing of a prisitive
recursive function o (m,-. ., we) .

| v —— O U N S — —— W —— — — —— —— — —— — ——— —— —— . — ———— SO w—— ——

by means of formulae in P. Xn fact tiere 18 a rule whereby given the

recmrsion equations defining a primitiw recursivo relation
(in, ) Af'( “y.
we can £ind a formulat® ﬁl[xo) e, Z J such that /ﬁlL‘F ) : O]

Copital Cerman letters will be used to stand for variable or undeter-
mined formulse in P. An expression such sa [ &, L ] will stand
for the result of substituting /& and [ for X, and Y, in A1 .

is provable"in P 1f F(h,) .y m,) is true, and its negatien is
provable otherwise. Further there is a method by which one can tell
~of a formula /ﬁL[ﬁo, S Zo] whether it arises from a primitive
recursive relsation in this way, and by which one can find the equationa



which defined th'e’relation. Formulae of this kind will be called

recursion formulne. We shall make use of & property they have,

which we canno’t orove formally here vdt.bout giving their definition
in full, but wrich 1s essentialiy trivial. Db [ %o, V] 1is te
stand for a certaln recursion forsula such that Db [ ¥ 0 0, f (uJO ‘
is provable in P if = 21 and its negation iz provable otherwise.
Supnose tmit- 4L L—Xo] , ,q@[xo] are two recursion formulse.

Then the theorem I am assuming is that there is a mcursidn relation

[/0?, ﬁ' L:xoj guch that we can prove
/7

o[ | * (30 ULYRSYD A &[OJV
o &E S EREY )(( [ ‘{/](M[;’JHJ 5613)

The significant formulae in any of our extensions of P are thoaa

(8.1)
in P.

of the form

(’%)(?7‘0) A% (%o, Y] (8.2)
wtere A7) l:xol Y J is a recursion formula, arising from the relation
"K( W, h) let us say. The corresponding nusber theoretic theorem
states that for esch natural number M there is a natural number A~
such that {( %, i) is trus.

The systems in \A/ which are not valid are those in which a
formula of form (8.%) is provable, but at the same time thers is a
natural number, W say, such that lor each natural number W,

R (u, b-) is false. This means to sy that N/ﬁl[flm) MOJ is

provable for each natural number W . Since (8.2) iz provable

~
/



| (::]7‘0) /ﬂ[f(h)o, )’oj 43 provable, s;a that
@) a0, y,],~e[#70, 0] ~.n[f o] .0

L3 S

are all provable in the‘syétem. Ve may simplify (8.3). For a given
M we may prove a formala qf‘{‘dm /ﬁZ[‘f {h')O) YJ 2 o@—[\/,j in
P, where q@ [:7’ 0_7 ‘,{s a Tecursion {ormula. Thus we find that the
necessary and suf.‘i‘icient condition for a systenm of \n/ to be valid

i +hat for no.recursion formula .f»[ Xoj are all of the formulae

(T%.) b%o],~ bl0], ~ 6 F0], .- (6.2

| provable., An Mportgnt ccnBequence of this is that if
,a’ [}(0]/ &zixajj c ey /M»KLKOJ‘

arg ‘recursion formulae and , _
(301, 1] v @x ), ] v @R 2, 1] @0
1s provable in C , end C 1a valid, then we can prove /OLVE‘F@)OJ
in C for some natural numbers ¥ , A where [{ ¥ { A, Lbt us
define 8r to be the formule |

(Fxo) 41, (x v - v @x,) AL [%0]

end define ﬁ\r E"o] recursively by the condition that f | [Koj
?n &‘ [.Ao] and EH.:LL?‘D:] be I.g”wr;l[}(-o_] . Now I
say that , , '

@r D (3 X,) ér [*o ] . (8.6)

is pro#uble for ! < v{h . It is clearly provable for = ] 3

suppose 1t proveble for a siven vV . Te can prove

) (3%) Db[Xos Ve ]
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and

(Y&) (3*0)’ Db ('F Ko, 'Fya)

- from which we obtain

E [y, >@)((28[x0%] - €.L4,])) v (DbLxorY] . 22, L4]))

and

v/ 1 [\/J D(QXO)((\‘.D‘ E‘o; 70] . é,. [YJ)V (:D b[%o, YJ- qu. / 50])/

These together with {8.1) yield

, (-3 \/n) g\' [\I"] v (3 70> ak‘” E\/"J > (HKO) 9( r 'ﬁk-el [xoj

which suffices to prove (8.6) for r+! . Kow since (8.5) is provable
in C- ’ (3 Ko) gu [KOJ | must be also, and since (C 4is valid
this means that ék [-F () o j must be pfovﬁbla for some natural
nuzber /v . From (B8.1) and the definition of gh [*oj we See that
this implies that »@ r [ ‘F () 0 J is provable for some natural
nunber & , and integer ¥ , & V<A,

To any systen C ofW we can assign a primitive recursive
relation PC (“‘, “) with the intuitive meaning '"m 1s the G.R. of a
proof of the formula whose G.R. is 4 Y. ~ The corresponding recursion
formla is (P%C [’“o; Yo [ (tee. (Pm‘yic [FMO) f“"o] is
provable when P C [ W, u) is true ’ and its negation 18 provable other-
wise). We can now explain what is the relation of a systen c ’ to
1ts‘ predecessor C « The set ol axioms which we zdjoin to P to obtain
€' constats of those adjointed in obtaintng C , together with all
formulae of the form |

@x,) P [%o, £70] DF o

where fn is the G.R. of f .-



: /CQ‘,L\\".:X\:«'\“ I

SJ
o
(W)

is provable tn ( . rBut by repetition of a previous argument tlﬁs
means that ’05{/ is provable for some é , ! < < k ’ contrary
to hypothesis. This 13 the required contmdicmor;.

¥e may now construct an ordinal logic in the menner described
on p. 44-48 , But let us carry out the construction in rather more
detall, and with some modiffcations appropriate to the particular
c-nse.r Each system C of our set w may be deseribed by means of &
W.F.F. MC which enumerstes ithe G.Rs. of the sxiome of ( | « There
1a a W.F.F. K such that if @ 1a the G.R. »f soze proposition J°
then (M (%) 18 convertible to the G.R. of

@) Pt [Ror f P02 F
1r ﬁ. 13 pot the G.R. of any proposition in P then E-( MC) _)
is to be convertible to the G.R. of O = 0. From A& we obtain 2
.F.F.Kauchthat /f(MC)o?M-e-])ccnv M ( ) K(M )
conv b (M ). The successor syaten C is de*‘ined by /'(( M )
" conv MC . Let us choose & formula ( such that & ('MC) ﬂ)
conv 2 if and only if the number theoretic theorem equivalent to
'ﬂ is dual' is provable in C . Then we define ,A_?by
_/x_ —> Awa. -1( >\7 CT(CI('(IA(U'Y) Nmn M(B’(Z w) B3, u)) UM ))!9

This is an ordinal logic provided that P ias valid.

Another ordinal logic of thia type has m effect been introduced
by Church™ . Superficlally this oriinul logic Beems to have no more

. S S A G A — — — —— Yt S TS it S diee  Nav Gw s ANMD et W v v N w—— T . - = —

9 In outline Church [1], 279-280. In greater detail Church [£],
Chap. X.

4n common with /\ than that they both srise by the method ve have
» |

described which uses C-K ordinal formulae, Tie initial systems
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are entirel; different. However, in the relation between ( and Cf/
there is an interesting analogy. In Church's method the step from

C to C / is performed by means of subsldiary axioms of wiich the
most important (Chures [2], p. 88, 1) 1s sluost e direct translation
into his symbolism of the rule,thaf we may take any formmla of form
(8.4) as an axiom. There aré other exira axioms, however, in Clmrch's
system, and it is therefore not unlikely that it is in some sense
more complete than"/\;P.

There are other typss of ordinal logic, apparently quite unrelated
to the type we have so far considered. I have in mind two types of
ordinal logic, both of which can be best described difectly in terma of
ordinsl formulae withbut any reference to C-X ordinal formulae., I
shall describe here a specimen of one type, sugzested by Hilbert
{Hilbert [1],7183ff), and leave the other type over to é 12.

Suppose we have selected a particuiar ordinal formula .2 . Te
shall construct a modificatidﬁ le' of the systen P of Gddel (see
footnote 1© ), TWe shall say that a natural number A  is » type if it
is either even or A& P-! where :_Q.(_‘_P, Z’) conv 5. The definition
of & varilable in P 18 to be modified b’ the condition that the only ad-
missible subscripis are to be the types in our sense. Elementary
expfessions are then defined as in P: in particular the definition of
an elementary expression of type O is unchanged. An elementar; formula
is defined to be a sequence of symbﬁls of the form UL, Jﬁzhv vhere
,0{,“‘ ) AN , 8re elementary expressions of types v , W  sat-

isfying one of the conditioms (2), (b), (c).
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(a) m snd n are both even and M excecds A s

(b) M 1is odd and h ia even,

() m=2p-1, n= 29-71 and _Q.(r-p) ‘_y) conv 1.
Fith these modifications the formal development of P_é_ is the same
as that of P. Ve wish however to have s method of &ss-o::iating number
theoretic theorems with cortain of the formulae of Py . ¥e cammot
teke over directly the asaociation we used in P. OSuppose &G isa
formula in P interpretable as a nunber theoretic theorem in the war
we described when constructing _A_‘ (p.50). Then if every type

suffix tn (g is douhled we shall obtain & formule in P o vhich is

to be interpreted as the samne muober theorstic uheorem. By the

method of é € we can now obtain {rom P‘_Q. a formula L‘_q_ vhich 13 &
logic formula of P ] 12 valid; in fact giﬁn_Q there i5 & method of
obt.aining L » 80 that there is a -ormula /L such that A ('Q)
conv L _Q_ for each ordmal formula .Q

Having now fanilisrized ourselves with ordinal logics by means
of fhgse exau‘xplazsb we ’m’ay begin to consider general questions concerning

then.
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¥o wish to show that a contradiction can bs obtaine:! by assuming
C ‘ to be inwvalid but C rto be wvalid., Let us suppose that a set of
formulas of form (8.4) is provable in C/. Let 'ﬁLz R yiﬂlz s e e
AL , be those axioas of €' of form (8.7) which are used in the proof of
Gxo)‘ﬁ[xbj « Ye may suppose that nrone of them are provable
in C . Then by the deduction theorem we sce that
on, o, .. 42, )o@x)E%] e
'is provable in . Let g be (ﬂxo) 'P,L,,%LC [,(w {:(“‘e)O]D j;
Then from (8.8) we find that -
_ : ~ " -
(3%,) Tarf L%, 700 T v v (30, Pug [o, T 20 @R,) FLx]
' 1is provable in C . »It. follows from a result we have just provéd thet
either ,E)— [-F (C)O] is prowvable for some naturel number C s or else
7)4,,.40[-[: (“)o-) .F C“‘Z) O:-( is provable in C for sone natural
number w and some £ , 1< £ { k&t but this would mean tuat F, we.s
provable in ( (this 5.§ cne of the points where we assume the valldity
of C ) and therefore also in ( ’, contrary to hypothesis. Then ,@—[-f ")oj
mist be provable in C $ bhut we are also assuming I” ['F(C)O_]
is proveble in C ’ . There is therefore a contradiction in C’
Let us suppose that the a.xioim /ﬁLl/.-. /&L /<// of form (8.7) when
adjoined to ( suffice to obtain the contradiction and that none of these

axioms are provadble in C . Teen
' / / :
N»ﬁl, VfJﬁbv...vNﬁZk /
ia provable in ( , and if alz is L.:.] K) (/)w? Exo/ #HC)O]DJL./
| ¢ c ¢

(3%) P [ 70 v v @) Teg [ £770]

/
/



9, Cogpi"tegess cguestions..

‘The purpoae of mtmducing o’*din&l ogics wBS to avomd ar far &

- possible ruae eifects of Godel'a theora.vx. I £ is e consequence of this
theoren, suitably modif fed, taat 1t 1s im')ossible to obtain u complete
,Iogic. foﬁmla, or {roughly speak:mg now) & Qonxplgte systeﬁ of logic. . ‘
Ye were able s however, from a given oysfem to obtam u mo comﬁlete one
by the sdjvnction e3 axions o& fomulae, Been intui*ivelf to o
~eorrect, but w‘ﬁcl"; the G’dd&l theoren shows are lmprnvablegl in thes

“‘-M-"n“‘ﬂ'“"———x.——o~.——nNb-—ﬁm—ﬁ“_—‘\—t.—-u—a‘-‘ B T

21 1, the case of P we adjoin &ll ol the axions (31‘0) 77“4 L"o; f(“‘) J

‘whera W is the G.R. of J‘: ome of wihich the (Bdel theorew shows to
be unprovable in P . : . o

u_n—-n‘*—-—F—."-.‘—_.”—a—-—-w—nm‘n‘”—.-—fum—‘—._-sm—a“mm

original aystem; from this e obtui:md © yet more complete systen br a

| repstition of;” t‘he'procéss,r and 'ab' on. Ve found thet the repetition ofA
the pr@oéséf féave' us a new rsj-,rstémfo; each c-X ordinsl formuls. Te
should like tr,;'vknoiv' wﬁbtbei‘ this process suifices, or whether the

, systém sﬁguld be extended in otﬁer USYB as. wéll;ﬂ If 1t were possible
to tell of a ¥.F.F. in normal fors whether it was an osdinal formula
we s;hw,L:_ 'méw Ev N cértain that it wze necessary to e:»xtemi‘ In other
wsys. In fact for any drdinal'fomula é x_ it wonls then be pasafﬂ.
to find & single logic formula L sueh that iF A( 2 H } conv £
:. Tor 30“19 o*d inal forrmla -Q- then L(ﬂ) conv 2. Since L- misth
be iJlGO‘ﬂplPtE thure must be formilasz H "or wh ich A( -Q-/ )

.48 not conver ible to 2 for anj orrima.l form.la _Q.- « A.owever in

_ view of the fact, prove d 1n §7 that there 3 no method of deternining
‘o; a formule in nomJ. ;or'* ‘mether ,»t is an 'r‘d nal fo“xsulz., tue

_¢ase does not ‘ari_se, end ﬁlera is sfill a poammli tnet soige




ordinal logics may be complete in sozme sénse. There is quite a natural
way of defining completeness,

Te say thsot an

ordinal logic A is complete if for cach dual formula H there iz an
ordinal formule —Q—n such that é_\_ (‘-Q‘H) ﬂ) conv £.

A3 has been ;xpln.ined in % 2, the reference in the definition to
' the existence of .Q_n for eacﬁ E is to be understood in the sase
naive war as any raf;rence to exist.énce in mathemstica.

There 13 room for modification in this definitiont we night re-
quire that there be a for&mxl_azg sueh that X ( A ) conv __@ p
ﬁ (ﬁ) being 2n ordinal formila whenever f is dual. There _;.s no
nesd, however, to discuss the relative meriis of these two definitions,
bécauae in all cases where we érove &sn ord.inal logic to e complete
we‘shall,prcm‘ it to be complete even In the modified sense s but in
cases wheré we prove an ordinel logic to be incomplete we uvse the de~
finition ans it stands,

In the terminology ofé (5] /l is cumplete if the elass of
logics !_l_ (-_Q ) 1s complete when __9. muns througzh 211 ordinal Tormulae.

There is another completeness property which is related to this
» dne. 4+ us for the moment say that an ‘ardinal loglc A_ iz éll inclu-
Bive if t§ each logic {ormula _L¢ there corfeaponds an ordinal formule
__g U:)such that __:/_ X_[ ._Q U:)) is as complgte &8 _1_-, « Clearly every
8ll inclusive ordinal logic is complete, for if }_:] i2 dusl then S Cf’ )

is a logic with E in its extent. But if A is complete and

i~ Nhoa T (A S(4 502 ko, v (Ve (D) S(2, N (1))
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fhen A. (-_/;\-) 18 an all inclusive Qrdinal Iogic.- For if 1 1a
in the extent of-_,_/}.(-gﬁ) for each _1_9 ,andweput -QZL) V(b)
then I say that if B is in the extent of L 1t must bs in tue
extent of /7¢ [.A. ‘Q(L)) In fact A, [_/\ —V(L))B)
v T (M. S (4,5 (>, A(.Qw_) ,V(Nu«(\f)))—f- S[z Nin(v, 3)))

For suttable & , Nu (1) conv L and then
o ._é\_(-_@- V(L) )'V(Nh(ﬁ))) cqnv 2

- Nh-b, B) conv 2
‘énd fherefore by the prbperties, of T‘ N S-

H;(/l Q’Y(L) ) B) conv £

Conversely H’c(/\_ 'Q‘\((L)I __) can only be convertible to 2 if

voth Mw(u, B) ena A‘(‘QV[LP V(Nh(b))) ars

" convertible to 2 for some 1c:si'ci\re ‘integer W ; but if A [ 0

vewy V(N ())f
conv 2 then Nwm [g_t) st be_;jlog;lc and since Nwm [y, _) conv 2,
B must be dusl. | | o

It should be noticed that oﬁrrdefinitione of compleieness refer
only to number theoretic theorems. Although it would be possible
to introduce formumlse analogous to ordinal loéics which would prove
more general theorems than number theoretic ones, and have a corres—
ponding definition of completeness, yet if our theorems are too
general we shall find fhat “our {modified) ordinal logics are never
cbmplete. This follows from thé argument of % 4. »If our ‘oracle!
tellsus, not whether any gifén number theoretic statement is true,
but whether a given formmla is an ordinal fofsmla, . the argument

s8till applies, and we find there are classes of problem which cannot
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be solved by a uniforn process even with the help of this oracle.
This is equivalent to saying that there is no ordinal logic of the
' proposed modified type which i3 complete with respect to thess
 probleme. This sitvation becomes more definite If we take formulae _
‘satisfying conditions (a) - {e), (£ (as described at the end of él&)
“instead of ordinal formulae; it is then not possible for tue ordinal
logic to be complete wi.f.h respect to-any class of problems zore
extenaive than the mmber‘ theorertic problsma.

We might hope to obtain some intellectvally satisfying systen of
‘logical inference (fof the proof of nuzber theoretic theorems) with -
soxme ordinal logic. Gbdel's theorem shows that such a system cannot
'.herl'hélly mechanical, 'bﬁt with a complete ordinal logic we should be
able- to confine the _non—néchsnical steps: entirely to verifications
that particular formulae are ordinal formulae.

¥e might also expeqt to obtain an interesting clsssification of
mber Vt}:-xeoretic’ theorens sccording to 'depth'. A theorem which re-
qnired an oﬁinal & to prove it would be deeper than one which could
be proved by the use oi an ordinalf less than & , However, this
rpremp ‘0ses more than 1s justified. We define
ﬂ Def'in;t;on of inveriance of ordinal logies. An ordiszai logic

j_.\_, is said- to be invarient up 4o an ordine.l X J.f whenever _Q. »
-_Q,- are ordinal formulse mpresent:mg the same ordinal less 4than

4 s the extent of A(_Q.) is identical with the extent of A(—Q-/.
An ordinel logic 15 inveriant if it is mvariant up to each ordinsl

represented by an ordinal formula.




Clearly the classif fcation into depths presupposes that the
ordinal logic used is invariant.
Among the queationswo should now like to ask are
{(a) ere there any complete ordinal logics?
{b) are there any complete invsriant ordinal logica?
To these we might have added tare all ordinal logics complete?’; but
this is trivisl; in fact there are ordinal logics which do not suffice
%o préve iany nunter theoretic theofems vhntevér'.
Ve shall now show thet (a) must be answered affirmatively. .In

fact we can write domn a cozplete ordinal logic at once. Put
Ot —> ,\a,[/\{_un. Ve (=), f[u))}(z\s H(rv(Targ), :1)5))

and

(onp — Auwa. {(“f, OGL(‘F))
T shall show that (“"“’f’ is @ complete ordinal logic.
I fa;:t 1t (o (.Q. Fl) conv 2, the
Q caw G (A)
cone Nmn . DE (d;(,\r (I ﬁ(,«) 1 ), B(Ar.e(1, Bls) 1 »))
L (=~ u) has o normal forn 1£ L2 is an ordinal formils, so thst
then @3 Nv. r(_":l ﬁ[t_n))) 1) ‘bes a normal form; this mesn:
that ¥ (T ﬁ'(cg)} conv 2 soze © , f.e. A (w) conv 2. Thus if
[5».1,[ A) conv 2 eand 2 1s an ordinal formula then A 1s
C"‘“P is therefore an ordinal logic. How suppose conversely

that A 1s qual. T shall show that ('_')at [H) is an ordinel formils

representing the ordlnal . In fact

(f’(z\r r(T H(a« ) 1, m) conv ﬁ[}w v-[l 1 ,M)



. comw 1(@) conw M
C?aL(_f_}, E’,_g} e”onv :Dl‘[_t_q/ _‘:,)

... @da [_H} i3 an ordinel formile representin; the same ordinal
as Db . But »

[M(Od(ﬂ)/ﬁ) conv S(éd[f})) Ool. [ﬂ)} conv 2
~ This proves the completeness of (0‘“*" -

Of course &ﬂwp i3 not the kind of complete ordinal logic
that we shoull really mnt to use, The use of Cw»f? does n.otr make
it eny easier to see that _f/ is dusl. Infact if we reslly want to
use an ordinal logic a proof of éompleteneas for that particular
ordinal logic will be of little value; the ordinals ziven by the
completensss proof will not be ones which can o be seen intui-
tivelr to be ordinals. The ohly value a: completeness proof of this
¥ind would have would be to ghow that if zny oblection is to be
ratsed ageinst an ordinel logic it must be on account of something
more subtle then incompletsness.—'

The theorem of complsteness iz also unexpected in that the
ordinal formulse nsed sre all formulse revresenting & . This is
contrary to our intentions in constructing _/ X,me' instoance; im-
plicitly we had in mind large ordinals exnressed in a gimple manner
Here we have small ordinals expressed in a very complex ani artifi-
clal wey, |

Before trying to solve the problem {b), let us see ow “ar A__P
end _A._T are invariant. We should certainly not expect _/_\_L_P te

be invariant, as the extent of _A_ (:g) wil . depend on whether .C
= her X




is convertible to & formula of form H({ _@) ¢ but suppose we call an or-
dinal logic/l C-X invariant up to K 1 the extent of A (H(f))1s tue
szme as the extent of /) [H (B)) whensver  and B are C-K ordinal

formulse representing the same ordinel leas than & . How far is 'A-’P

' C-K invariant? It is not difficult to see that it is C-X ‘invariant up to any

finite 'ardina_l, that 1s to esy up to & . It is also C-K invarfant
up tow+] , and follows from the fact that the extent of A’P (H(Mufx -« (R)))
is the set theoretic sum of the extents of
A (R Qe ROD)), A (KA - R(2)), ..
However, there 18 no obvious reason to believe thet it i1s C-K invariant
up to W+2, and in fact it 1s demonstrable thet thiz is not the case
{see the end of thiéﬂ section). Let us try to iseg what happens il we
try to prove thst the extent of A‘P (H(Lac (A uvlnc cw (B ))1s tne
saze as the cxtent of .A_? (H(-ﬁu( Au,l?-. w (R, ) where (\u)lsc. u(ﬂl)
end Au_s..‘l*&_ w(R,) are two C-K ordinal fomﬂ;e representing & .
Pe should have to prove that a formula interpretable as a theoren of
number theory is provable in C[&e,( ?\.u{'ﬁ - (81))] 1f and only
if it is provable in C[&céAulLﬁ. w C_(B,_))_] . HNow CE&L()«VLLM[BJ_»‘J

is obteined from C[M‘lx.u('lil\]by adjoining ell axioms of form

, o e
(gm),lu#'CD\“#w;u[Rl) Lﬁ"i'F )OJ >F (2.1)

Ihera M is the G.R. of QC). and C/Jue ("\“‘L?‘-“(&_)Hia obtained

from C[f\ u{*- u (,R,_)] by sdjoining all axioms of - form

(3x,) ?”'r’c[m‘tw. (8)] ["of, f(fooj 55 (0.2)

The axions which must be odjoined to P to obtain ( [f\ “{*-“[‘Bjm



~
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easentially the same am those vhich mmst be wdjoined to obtain

C [(\ u{% ‘&(:R’_ﬂa however the rules of procedure which have to be

applied before thege eg"oms can be written down will in general be

- guite different in tle two csses. Consequently (9.1) and (9.2) will

be guite different axioms, and there is nc reason to expect their
- consequences to be the same., A proper underatqnding of this —ill
meke our trentment of tuestion (b) much more intelligible. Se:z slso
footnote .
Now let us turn to A . This ordinal logic is invarisnt.

' ; T ’ ‘ .

Suprose .2 , O represent the same ordinal, and supooze me Lave
“aalig— —

a proof of & number theoretic theorem G’ inP P

—

expressing the number theoretlic theorem does not involve any odd

The formula

types. Now the‘re‘ is a one-one correspondence betiween the odd types
_such that if dm -7 corresponds to o " 1 end Zu-1 to Za'~7
then _Q.[e:«, !_ﬂ) conv 2 implies ._g./[lg ', ) /] conv 2. Let us

Cmodify tlﬁe odd type-subscripts occurring ir the proof of & 5 re—
plaéir;g each by its mate in the one-one correcpondence. There re-
sults a proof in P/ with the same end formula & . That is to

say thet If G is provable in P

o 1t is provadle In P/ A

-

i3 invariant.

The cuestion (b) must be answered negatively. ¥uch more can be
proved, but me shall first prove an even wealcei result which can be
esteblished very éuickly, in order to illustfate the method.

I shsll prove thet an ordinal logic [ \ canzot bte invariant and

nave the property that the extent of A[ .Q.) is a strictly increasing
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function of the.grdinal represen’éed oy ___g_ . Suppose ___/\_ nas these
propartiss; ~e shall obtain = contradiction. Lt /7 be a W.F.F. in
normi form rmdA without free Vvarie.bles, and consider the process of
Carryi’ng out c.'mv«afsioaa on ﬁ [ vy } wtil :im fave showm it couvertible
to 2; then converting ﬁ(i] tqi', then_/_‘?(3)'and so onz suppose
that after ¥ steps we ;re 3ti2) perforzing *he conw:rsion on ﬁ( éﬂr) .
There 13 & formule T b such that »77\( ﬁ‘l f) conv M, for eack
positive integér ¥ . KNow let Z- be & {ormula such that for each
positive integer h , Z ( l—t) iz &n ordinsl ‘orxmla representing

i , 20 supoose B 1s = member of the cxtent of _A_ (&L—( me(z)))

om—

but not of the extent of  /\ [a/m[Z))
/( — Aa. A(&{a[w((\V 2 (T4(s,r)) B}

then l( 15 a complete loglc. For if /7 1is dual, then
&“_(,,Zw ((\r Z(JL(H r)))) reoresents the ordinal
w941, and therefore K*(A) conv 2; ut 12 A () 1s not con-
vertible to 2, then Juc (i (Ar. Z(TK(B, r))))  represents
ea ordinal mot exceeding & “~+ 1, and K*[ A ) 1s therefore not
convertible to 2. Since tzere are mo com: ote logic formulae this
proves our zssertion. |

¥e may now prove more powerful resulis.

Incompletencss theorems. (A) If an ordinal logic A_ is in-

—

variant up to an ordinal X , then for any ordinal formula .g
representing an ordtnal 4, ﬁ<a( » the extent of /) (£2)1s

contained in the (set—theoretic) sum of the extents of the logics

A( P) where P 1s finite.



56~

(8) If en ordinal logic /] is C-X invariant up to an ordinal
o( , then for any C-X ordinal formula it repréaenting an ordinal / .
/3(;( , the extent of _A_ ( H(R )} is contained in the (set-theoretic)
sun of the extents of the logics /) (+ (£)) where F  1s a CK
oxdiinal formula representing sn ordinal less than ™ .
Proof of (A}. It sufficea to prove that if Q. represents an ordlnal

Y’ usa«u » then the extent of £1.(2 ) 1s contained in the set
theoretic sum of the extents of the logics,/L(!ZQ where ;upresents an
ordinal leas thanx The ordinal dfmmt be of the fom%*? where ¢

is rinita and represented by P sy, and & is not the successor of &ny
ordinal and is not 1935 than & . There are two cases to consider; &'o
and &3 72w . In each of them we shall obtain a contredictlon from the
assumption that thers 1s & W.F.F. B such that A_ (_Q ) conv 2 whenever
ég represents 3’ but is not convertible to 2 1f-‘2 represents a soallier
ordinal., Let us take first the case Jb > 2w . Suppose Jg 43+73 . and
that‘SZ ia an ordinal faruula re“resenting a/ Let {7 be sny W.F.F. with
a nomal form and no free varigbles, snd let Z be the olasas of those
' positive integers which are exceeded by all integers N for which H/g) is
not ccnvertihla to 2. Let 5" be the class of integers 24 such tust ,Q(? ,4)
conv & for sonel( belanging to Z The clasa t » together with the class
? of all odd integeras is constructively enumerable. It 1s evident that
the class can be emumerated with repetitions, and since it iz Infinite the
required enumeration can be obtained by striking out the repetitions.
There 13, therefore, & formula En such that [ a [ L ) ﬁ ) _V:)
runs -through:the formulse .of the cless: E ~+ (P " without '

repetitions as I runs through the positive ihtegers. We define



87~
'ﬁ 7)\00'0.’0“-*\‘5’““‘(3(? ¢, ﬁ'“(‘*"‘l“") k"‘/“';“ “))

Then ﬁr(—, ) ﬁ/ is an ordi.nal formula which mpresemta J’a if ﬂ
is dual, mt = smaller ordinal otherwise. In fact

ﬂl"(-a-l;ﬁ,-,_) conv {J’u-m.. (:N" foR )} (/: (£, 8, w\) Lk(.QL, A h))
Now ir ﬁ is dual = -f-(,Q ifkcludes all integers W1 for which
{fw(‘bk _g_ } (m W,) : oonvﬂ. Putting Enl(L, B, 7>)
cony 9 " for (P)9) we sco that condition (7.4) is satisfied,
#o that R/, ) 1s an ordinal formula representing Yo - Bt
if H is not dual the set £ +{/ consists of all integers m forr
which {J’M[’Jé Q )}[_,_) conv 2, vhere I depends only on _fz .
In this case XE( L. ( > A ) is an ordinal formula repressnting the
7 saﬁ\g ordinsl as ./uf[fm(m;ﬂi)) _V_') s and this 1s smaller than
Ko . Hmv consider _/_'_( 3
K= Na. A (fun (RH(2,,8)P) B)
JRE ¢4 fl 18 dual, /_'_f (_Q‘)_ ‘18 convertible to 2, since S s {W/P/‘Q:u - )/ f}
represents ) . But if 18 not dual it is not convertible to 2,
tor Vi (RH(L,,A )) P } then represents an ordinal smaller than
X « In M we therefore have a complete logic formula, which is impossible.
Now we take the case 2(0 24 , Ve introduce a W.F.F, MJ such
that 1f W 1a the D.N. of a computing machine e#f , and if by the
m H, complete configuration of 0/ the figure O has been printed then
Méi, (4, m) 1s convertible to f\?'?/ R4 (T 2p 1'17/)/ 3, 4)
{vhich is an ordinal formula representing the ordinal 1), but if O
has mot been primted 1t is camvertible to  Ap4,, P(y, T, 4)
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~ {which represents 0). How consider M .

M = da. A (Sem (dn (H3(%)), ), B)
If the machine never prints O then Lo [ A Md. (a,r) ) represents
& and \rw [éﬂ“\ [Ha,(‘:‘.)),drepresents a’ . This means that M& (‘_“)
is icon’verusle to 2. If, however. @/, ever orints O, Smn [’4«'—-(”3(4_:)), r
represents a finite ordinel and M ( &) 1s not convertible to 2. In
M ve therefare have a weans of deteraining of a machine vhether it
ever prints 0, which is impéssiblezz. (Turing {1], } 8). This con-

E —— e e S agvn w— m— —— A —— — —— — — — AN ——— . ——— —— —m. M Sm - — ——— MMAR v - i ———— v — man

23 This part of the argument cun equally well be based on the impossi—
bility of determining of two W.F.F. whether they are interconvertible.
{Church [3], %63.)

—— e o A =t m S = S Gman WS e MR —— e e et e e A Smer  Wwe  wmm mm— wad e

pletes the proof of (A).

" Proof of {B}‘.. It fficeé to nrove thet if § represents an
ordinal } , uféy £ then the extent of _A (H(CE )) is in-
cluded in rthe set-theoretic sum of the extents of .[_l ( H{ é’ ) ) where
g» represents an Vordinal less than X « Ve obtain a contraliction
from the assumption that there is a formila _@ which is in the
extent of !}_CH[Q')) if _G_' represents Y , but not if it repre-
sents any smaller ordinal. The ordinal a’ is of the form
J‘F w4 ; where 5'4 o . Let 2 be a CX ordinal formula repre-
senting S_ and 99 one representing E .

—_

¥Ye now define a formuls Hg . Sup?oae ﬁ is a ¥F.F.F. in

~normal form and without free variables; consider the process of

carrying out conversions on (1) wuntil it is brought into the
form 2, then converting Q(Z} to 2, then A(3) , and so on.

Suppose that at the Y th step of this process we are doing the Vlrth



-69-

atep in the conversion of _/?( ':v) « Thus for instance if _/_9(3)
be not convertible to 2, ™ _ can never exceed I. Then Ha,( _/?, !‘.)

hr) for each positive integer

-

is to be convertible to Af .?l[}_n »
Y . Put : ‘
Sy = Aebn, 6 (Sag, m (Aaugn . w( 3y .y (g a5, 0); dloy 1)
| M — :\auf*. 9[«-, b eldy. He (4 v, J5:(2)))
M — Aa. A (M), B )

then I ssy that K is a cooplete logic formule. S,i/ ( 2 W h ) is

-1
‘s CK ordinal formula representing Sfuq &+ , and therefore
Ha' ( H"y-, Ii’ ('\D)} represents an ordinal j’v_ which increases

4 ' o
steadily with increasing Y , and tends to the limit S+ W~ ir P

Viardus.l.r Furthér H&( Ij, r, fy (@)){ H&[B)JZ'), J’y (._'Z_))) for
each positive integer ¥V . Au{*.u ( ?\7_ Hg (8, Y, 521-/ (2)) is
therefore a C-X ordﬁ.ng.l forrmula and represents the 1linit of the
sequence 3’1» :f‘“ 3’3 . <. This is 54 w™ 1r Q is dual, Vbut a
susller ordinsl otherwise. Likewise M (ﬁ) representsb/ if ﬁ is
dusl, but a susller ordinmal otherwise. The formulae 3 therefore
' belongs to the extent of __[}_ (H {U(E») if and only if ﬂ is dusel,
‘and this implies that _['_f 4 15 a complete logic formula as was asserted.
But this is impossible and we have the reguired contrediction.

~ As a carollary to {A) we see that A £ is incomplete and in
fact that the extent of /) H (ZD t)  contains the extent of .

AH (S_l) for any ordinal formula .g__ - This result, suzgested to me
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first by the solution of question (b), mey also be obtained moreﬂirectly.
In fact 11‘ a numbér theoretic theorem can be proved in any particular
Fo it can be»provédin Ppimn. mli I, 4) + The formilatdescribing
mmber theoretic theorems ln P do ho involve more than a finite
number of types, type 5 being_ the highest necessa.ry. The formulee
describing the number theoretic theorems in any P g2 will be obtained
by doubling the type subscripts. Now suppose we haove a proof of a
nmnber‘theoretic theoren G in P Q and that the types occurring in
the proof are among 0, 2, 4, 6, 8, 10, 61', ('.;_, (:;, .« . '(’R . Te
- may Suppose they have been arranged with all the even‘types prec=ding
all the odd types, the even types in order of nagnitude and the type
o -1 preceding din- 1 if ._g.(@/‘b_r) conv 2. Now let each bk‘

be replaced by /O + d r taroughout the proof of (f . Te obtain
Vaproofofﬁ- inPA“m iy T 4)" .

As vith protlem (a) tae solution of problem (b) does mot require
the use of high ordinals {e.g. if we make the assunption that the
extent of 4 (-g) is a steadily increasing function of the ordinal
represented by £ we do not have to consider ordinals hizher than

w+2 )‘. However, if '?;e restrict what we are to csll ordi,;aal for-
nmlae in some way we she.ll have corresponding modified problems (a)
and (b); the solutions will presumsbly be essentially the same but
" will involve higher ordinsls. Supvoae for example that (Pﬁad/ i§ =
W.F.F. with the property that Paved (L £, 2,) 1s en ordinal for-
mula vreymsenting Mt ¢, when -_Ql , -S_ZL are ordinal formulae repre-

senf.ing o({ s 0(1’ respeétively and suppose we call a W.F.F. a



1—-ord:1n§t17fomﬁila vhen it is convertible 'Lo the forna fm( ( Dt‘)) f)
where 7'._9.) _E are orc?.inalfonmlge of tg'hich P reprje:;ent:s a
finite ordintl. ¥e may define l-ordinal 15g1¢a,, i—completeneaﬁ and
' -l—inveria.nce in en obvisus my, and obtaﬁn & solution of prat tlem-_('ﬁ)
vhich differs froza the solution in the ordinary case in that the |
ordinsls less than W teke the place of the finite ordinsls. liors
‘generally the ceses I heve In nind will be covered b}, the fol m"i;pg
7 the:orem.,

Suppose we have o class ¥ of for:-.mlae representing ordinals in

o
g

28
some manner ve <o nof sroposs to speci;y definitely, and a smbset U
25 The subset U Im)L.y gopergedes V¥ in wbat follows, e in troduction
of ¥ serves to enphusise ‘“‘Le fact that the set of srdinals rsp“&ar:nttd
by meumbsrs of U may have gaps.

"of the eclang ¥ sue

{1) There 1s o fornpla 5 ek thet if T enwmerates & Sequence
=

-

of menmbers of U represeating sn increscing sequence of ordlnals, then

5 ( ) iq z member of U rerpras;anting the limit of ine sequence.

{ J) There L& & formula b such that E [ ) iz - esaber
of U for sach nair of positive integers M , W and I¥ 1L reprecents
y L
fhh‘_uheu £mh<£ “““eicerm<m or M2l h<lh

(115.} There is & few G such that if _l‘_? iz 2 wesber of UF
then & (" A ) 1s @ member of U representing a largar ordinal than does
ﬁ, s 8nd such thet G(ﬁ' (‘" ] )) always v-eoreaen*a 343 ordmal
nat»_l&rger than~£ ”"*I:—“v B . s

Ve defins a ‘V«-orﬁmz' logic to be & ¥ F.ﬁ . A such that A (_ﬁ_)

i8 a logle 'Wllanrr.-wer ﬂ  belonzs to V. A ia V—inva“i&n if the extent
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rof ._A [ 5) | depeﬁds only on the ordinal represented by | _/? . Then

it i;-not possible for a V-ordinal logic.{g_ to be V-invariant and

have the property that if é; represents a greater ordinal than j;;_ >
( 9( and g_)_ b>th being members of U) then the extent of :é\_ (C,)

is greater than the extent of _A__ [ C 1,) .

¥e suppose the contrary. Let.jg be & formula belonging to the
extent of __,/_l [__G_f (@- C(\V‘ E(V, l)))) but not to the extent of
'_/_l [ 5 [‘\V‘- ’L_T—.(V)—Z)))Su'ooosethat our assertion is false and
that = . o ,
K'— da. N (B Av- g2, v £)),3)
Then 5 /13 a complete logic. For
He (B v, ) comv £ (my, 8,

é..( E"f) 5() is a sequence of V-_-ordinal formulee representing an
increasin:; sequence of ordinels. Their limit is reoresented by

@ Cc\ r. H&[ﬂ/ v [;-A ) ;3 let us sezwthat this linit is. First
suppose B is dual: then Mr tends to infinity as ¥ tends to
infinity, and C:') (?\r_ H (-'9/ v, _lf )) therefore represents the
same ordinsl as @( Ar. E( r, 1}) . In this case we must have

B, (ﬁ) conv 2. Now suppose _ﬁ is not duals M is eventually
equel to some constant number, & say, and @ (:\r-. H& (ﬂ, ¥, [_2’. )}
represents the same ordinal as __@ ((\V. _1-';? (9.’, 1f))isrh:i.ch'i.s smaller
than that represented by @/é\ r. E (V, 7.)) . 2 cannot therefore
belong to the extent of (@ ( . Hg(ﬁ, r, g) , and _[’_((_ﬂ)is
not convertible to 2. We have proved thzt &i/ is a complete logic

which is impossible.
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This theorem can no doubt be improved in many .x&ays. Sowever, it
is sufficiently general tq show that, with almost any reasonable
ﬁotation for ordinals, completeness is incombatible with invariance.

Ve c$n still give a certain mezning té the classification into
depths with highly restricted kinds of orciinals. Suppose we tale a
partiéula;f ordinal logic é. and a particular ordinal formula '%‘
n‘:pnésenting the ordinal X say (pmfembly a large one) ,- end we.-
restrict ourselves to ordinal formulae of'the form /hf [ ‘f” a ) .

Ve shall then have a classification into depths, but the extents of
ell the logics we so obtain will be contained in the extent’rof a single logic,

Te now attempt a problem of a rather different character, that
~ of the completeness of A'P « 1%t is to be expected that this ordinal
logic is compiete. I cannot at present give & sroof of this, tut T
can give » broof that it 1is complete as rezgards a sinmpler type of
theorém than the number theoretic theorems viz. those of form ! a( ;g)
vanishes. identically' where 9( K) is prinitive recursive. The
proof will have to be much abbreviated as we do not wish to go into
the formél detarils of the systea P. Also there is & certain laci of
definiteness in the probler as at preseant stated, owing to the fact
that the formulae &, F , M?mre not completely defined. Our
attitude here is that it is open to the sceptical reader to give
detailed definitions for these formulae and then verify that the re-
maining details of the proof can be fllled in using his definition.

It is not asserted that these deteils can be filled in whatever be

the definitions of & , £ , M~ consistent with the properties
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‘alrady required of then, only th:t it is so with the nors
natural deiinitions,

I shnli prove the eomplotencss theorem in the folloring
form. it [ Ko ] iz a recursion formuls and &[o] ,
S[f0] , . . .arcoll provable in 2, then therc 1 o
C~i urdinal forrmle Q such thnt (&,),@[Iiﬂ is »rovoble in
the syst .~ £ of loglc @btatmed from P by adjo ning
a5 exioms all formulie vhose G.R'% are of the form

B ( Abun, ’K(a—(’v“), 3{3,“))///1, e, r)

(provid:d they r. » snt ro)sition:)

Zirst let us define ihe formuls A . Su pose D i3 o
el e vith the property thot ')_[ 4_4) conv . u'B—EF(M)o is
“rovoble in i, but D () conv 1 ir ~H[F 07 15 yrovavle tn
I (¥ iz veing es-urwd comsistent). ot ©  be derined by

O — {Avu. w((0u)}(Aew v(o(sw))
ens let V be o formule with the provertics
V(2) comv Aw.w(fue, U)
V(1) comwv Au-w (I, O(Se))

The existence of such o foriwis is estnblished in lecne 1

4

corollary on p 220, lio ' put

H-k—7 r\qu*-“/x\/f V(_Q[\/)j\[lulvl)xj

am—

R —> Lc(ﬁ*)



¥
I aszert that ﬁ s E are C-K ordinal fomulae whenever

1t s true that B[ 0] , L/Ff0T, ... are all provadble
in P, For in this cese B* is A kYLX- ‘L(@) where

R — 2y V('D(y)l Y, wfs %)

and then _

Au{-ﬁ.@(ﬂ)'mm >\u.‘l‘l~. V{@[g)/g,u,{)x)
conv Au{:ﬁ_\/{l,ﬂ,“,{)x) |
conv ,\uf-'z&, {r\u.b\[&c) U)}[g_\ ulYl/x)

conv A u*'ﬁ “‘/f“g qu-, 19 ‘hieh is a
C~i ordinsal fdmula end

>\u.‘[1k -SZ.‘&‘DALU {.2() conv -E.-.c,[r\aylx M(.Cu.c ; u/vljxj

<hee rels Lmun hold for an. a“‘bitrnry positive lateer A
and therofore H is & C-L ordinnl formile (condition (9)

Pe 52): it folzw mecmi,uc:ly thot H is =180 a C=i
ordinal formuln. it remains Lb prove that (K )ﬁD‘ Jis
provable in ¢ ,ﬂ To o i.f; it ic necezcery to exaning
the structure dlf H ' caso thot (X, )&[X] is

false. iei us Buppose ’ohr:-t/U ‘[*EF(&-')OJ is iruc so th ¢t D(2)

conv 1, and ].zat us consider' B here

B __.>§u.+~s V(;(g))g, ‘*,V; 7&)

> | :
wire & C-. ordin-1 formula them D :iould be o

|

Ir



popber of its f.ondarentsl s juence; out

B conv Aefr. V(12,44 5)
comr Awfr. [An.n (I, 0(0e)) (e, « ¢ x)
comv Aufr . B (L Y, &)
com N { Auw (O) (e, f, %)
coy Augw. Sue (@), u i, x)
conv  Suc [)\u.yl:ﬁ. O(Lec, o, ¢, x )
coov Luc (B) - (9.3)

“h g of course impiles th't B4 B :nd therefore .hat _:_B
is no C-_ ordinzl formules. “his, ;lthom:;h fundamental

to the o0scibility of »rovin: our comnletenes: theorem
do: not form an actunl 3tcH in tl@ arsument. ioughly
snoaling our arguzent will amount to this, The relution
(9.3} implics thet the systen o B is inconsistent and

X
thorofore th't & R is ineousictent, rnd inde d we eun

prove in 7 (and g fortiord in = f ) thet fv(x,) oﬁv[}‘a]
implie= the inconsizstency of = a-*. sn the other hend in

ry f we cen prove the consistoney of »° -H* . 2

inconsistoncy of = } iz qucved by the G0dol crouwwent,

-6t us rctun to the dotnils,

s . . B
e cxiong in P < nre those whose L.k'g ry of the form

B (e w2000, %6), 1, 1 )
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Replaeing _:__B by S (;B ) this becomes

Lie (B Awn. m(B(2,) ®(3,4)), K, Mo, r)

conv K[E(’\“‘"' m(ﬁ'[tJu)/ B—[g}u))l [/;I M"P/ r)
cony _B(Awm. (M2, u) D(34)), 4, Mo, ¥ )

it ¥ comv Zp +7

conmv & (B (A .
(B (Awmn (& (2,9, (34)) K, Mo ),f)
if ¥ comv 29
uwhen e omember the es-ential proserty of the formuls l‘.:

we “ee thet the axious of P _‘E include al! formulse

of the form
Q T, %)
(El%,,) “‘""%’fp.’l an/ f 70] o f
where 7/ 15 tho G.2. of the formula O .
iet b be the Uere O the formla ﬂ .

@)% { Ptps [50v] #2231} ()

] [“o, %o, ZoJ is = partieulsr recursion formlns sucir thot

) () (n _
Ss[f "0, f 0 f bjmms if :nd ouly if A in the G.R. of the
e
re ult of substituting f[ )0 for Z, in the formuls
vhose Gelte 18 € et 011 Doirts vhere 2, is frec. iet P

be the Ge.. of the formula & .

’V(a)f, )é Ko)( 7740‘-#?2[&0/ 70] . '%[-F (‘)0/ 'F (b)o) 70]} (OE)



Then v22 hove ¢ »naxionn in P ~

(3%, qu,%f?é [x,, -FCP)OJ 5L

and “»o can ovove in P o
b) _ (p)
(%o) J6 (f (‘)0; ‘F( 0,%,] > %, = f "o (9.4)

: (s)
since L is the result of substituting f O for Zoin

ﬂ . whenee
~ [_370 ('744'??.@ [70) -F(?)O (9.5)

is prov:tle in e U in: (9e4) verin we sce th b ,C ean

ve sroved in P 9

« But if we con urove ,C in = g then
o cap mrove its provebillty in @ g , the proof being in

2 si.e., v'Cc cin Orove

F%,) T g [%,, £T0]

in 7 (since is the Ge.ia OF oc )« But this contredicts
‘5— (e~ I)
{9.5), 5o thot if o E TOLTuC € eTn orove o
.3
contrac.ction in L or in f e WOUZ L a:cmt th t
the —hole arguent un to this oolav cen be ¢:r:ied throuzh
formaliy in the systenn 7, in fuect th 't if C be the

GeRe of ~(0= 0) then

~ (Qo)u(*[a'oj p (30‘;) va?rpﬂ* LU’O , f“)oj (9.6G)
is »rovable in 2, #wil? not ~ttenpt to give any or:

detailes proof of this asnertion.



The formula | ' k|
@Fr.) o] e* [%,, £0] > ~(0=0) (9.7)

&

is an axiom In P « Combining (9.68),(9.7) we obtain
(ro) L] m 2 2. |

This comploteness thsorem as usual is of no wvolue.
Llthough it shows for instanse that it i1s possible to
prove Fermati's last theorem with A’P (1r it is true)
yet the truth of the theorem would real'y be assumed
by taking a eertain formuls &s an ord:lnal formula,

That /X? is not invariasnt may be proved e-sily by
our gener:l theorem; clternativcly if follows fron the
fact th't in proving our pertiel completenes: theorem
we pevor used #rdinals higher thon ©+ 1 , This faet
con ola3o be used to prove thet /) p 18 mot C-X
invariant up to w+,2_ .
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10, The continuum hxﬁgggggis. A digression
The methods of % 9 may be applied to problens which are con~
atructive anslogues of thercontinuum hyﬁotheaia nroblern, The con-
tinuum hypothesis asserts that o Mo N, in other words that if

W, 1s the saellest ordinal ¥ greater than @ such that & series

1

with order type C( cannot be put into one-one correspondence with

the positive integers, then tiwe ordinsls lesz than &{1 can be put
into one-one correspondence with the subseis of the positive integers.
To obtain a cansffuctive analogue of this proposition we may replace
the ordinels 1e$s than ¢J1' either ﬁy the ordinal formulae,‘or by the
oriinals represented by them; we may replace the subsets of the
positive 1ntegefa either by the cbmputable sequences of figures 0, 1
or by the description numbers of the machines whlch compute these
aequencoé.';In the manner in which the correspondence is to be set
up there 1s also more than one possibility. Thus even when we use
only one kind of ordinsl formula there is still great ambiguity as
to what the constructive anelogue of the continuwa hypothesis should
be. I shall prove a single result in this connaction25. A nunmber
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A suggestion to consider this problem caire to me indirectly from
F. Bernstein. A related problem was suggested by P, Bernmays.

of others may be proved in the same way.

Ve ask 'Is it possible t>» find a computable function of ordinal
formlae determining & one-one correépondence betreen the ordinals
represented bybordinal'formulae and the computable sequences of
figures 0, 1?'. More accurately 'Is there a formula l: such that if

Q is an ordinal formuls and W a positive integer then E('g:' ) -V—‘)




is convertible to 1 or to 2, and such that f(;Q} _‘1‘.) conv I (-Qi h ))
. for each positive integer h , if and only if L and .__Q/ represent

the same 6rdinal?'. The anawer is 'No', as wil. be szeen io follow

from tuis: there is no formula F such that F(£) enumerates s

certain Sequence of integers (each being 1 or 2) when:£; represents

¢) and enumerates anothér sequence when gé; represents O. _If there
is such an _F then there is an & such thst E(g)g) conv £ (D, 9_-)

if.g. representa'w ut f(Q-/ a4 ) and E (m‘ Eb) .are convertible

to differsnt integers (1 or‘2) if.ég represents 0. To obtain a

contradiction from this we introduce a ¥.F.F. G no£ unlike M 3_.

If the :naéhine P/% whose D,N. 13 A has printed O by the time the

M th complete configuration is reached then G A, q_n) conv

Amw w(k}i;g) - otherwise &W@L@)cmv
A']’j/m(["("':‘; 2#21,),37}. Now consider _F(Wt‘l a) em F (o&‘m (6“"‘{‘3))) f‘)
If Mnever‘ prints O ol L a (Gm(l_« )) represents the ordinal @ .

Othérwise it represents 0. Consequently these two forrmlee are

convertible to one another if and only if %never'prints b. This

gives vs a means of telling of any machine whether it ever prints O,

which is impossible.

Results of this kind have of course no real relevance,fo: the

classical continuum hypothesis.,
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11, The purpese of ordimal logtes.

Mathematical reasonins may be regarded rather schematically as

the exercise of a combination of two facult1e524, which we way call

Ve arc leaving out of account that mo:zt important faculty which
distinguishes topics of interest from othersy in fact we are regsrding
the function of the mathematiclan as simply to determine the truth of
falsity of propositions.
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which we nay call Intultion and ingenuity. The activity ol the intul-

tlon consists in making spontaneous judgments which are not the result
of counscious trﬁinsof reagoning. Theae judgmenta are often, but b
o reans invariably cor rréct (leaving aside the question as to vhat
is meant byr'correct'). Often it 13 posaible to find some other way
of verifying the correctness of an intuiiive judgment. One may for
instance judge that all positive integers are uniquely factorizable
into primes; u detailed mathematical argument leads to the same result.

It »ill also involve intuitive judgments, but they will be ones less
’op/en 2 criticism than the original judgment about faétorimtim. I
shall not sattempt to explain tﬁis ides of 'intuition! any more
explicitly.
| Thé‘exercise nf ingenuity in methematics consists in alding the
intﬁition through suitsble arrangemeﬁta of propositions, and perhaps
geometicel figures or drawings. It is intended that when theae.sre
really well arranged validity of the intuitive steps which szre re-
quired cannot seriously be doubted. |

The parts played by'these twoe faculties differ‘of course from

occasion to occasion, and from mathecaticlan to mathemﬁticinn. This
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arbitrariness can be removed by the ‘ntroduction of a formal logiec.
The ﬁeceésity for uaing the 1ntﬁition is then greatly reduced by
aattiﬁg down formal rules for carfying out inferences which are slwars
intﬁitively valid. When working with a formel logic the idea of
ingenuity takes a‘more definite shape. In general = forﬁal logic will
be framed so As to admit a considerable variety of poasible steps in
any at#ge in a proof. Ingenuity will then déterminc which steps are
the more profitzble for the purpose of proving & particular proposition.
In pre-Gddel times it was thought by some that it would probably be
possible to carry this program to such a point that all the intuitive
judgments of mathematics could be replaced tyba finite numbeé of these
rules. The necessity for intuition would then be entirely eliminated.
In our discussidhs, héwaver, we have gﬁne to the opposite extreme
and eliminated not intuiﬁion but ingenuity, and this in spite of tle
fact that our aim has beén in much‘the same direction. Wé have been
trying to see how far it is possible to eliminate intuition, and
leave only ingenuity. We do not mind how much ingenuity is required,
and therefore assume it to be available in unlimited suprly. In our
metamathematicel discussions we actually express this assumption
rather differently. ﬁe are always able to obtain from the rules of a
formal logic a mgthod for enunerating the propositions proved by iis
memns. Ye then imagine that all proofs teke the form of a éearch
through this enumerstion for the theorem for which = proof is desired.
In this way ingemuity is replaczd by patience. In these heouristic

diascussions however, it 1is better not to make this réduction.
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Owing to the 1mpoasibility of finding a formal’logic which will
wholly eliminaie the necessity of using intuition we naturally turm
to 'non-constructive' systems of logic with which not ull the steps
in a proof are mechanical, some being intuitive. An example of a
non-constructive logic 1s afforded by any ordinel logic. Vheh we
have an ordinal logic we are iﬁ a position to prové nunber theorstic
theorems by the intuitive steps of recognizing formulae as ordinal
formles, and the mechanicalrstepa of carrying ouf conversions,

What properties do we desire a noﬁ—conatructivn logic to have if we
are to make use of it for the expression of mathematicel pro:{s?

Ve want it to be quite clear when & step makes use of intuition, and
when it is purely formsl. The strain put on the intuition should be
8 minimum. HMost importént of all, it must be beyond all reasonable
doubt that the logic leads to corréct results whenever the intuitive
steps are_corroatzs. It is also desirable that the logic be adequate
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This requirement i3 very vague. It is not of course intended that
the criterion of the correctneas of the intuitive steps ‘be the cor-
rectness of the final result. The meaning becomes clearer if each
intuitive step be regarded as a judgment that & particular proposition
i3 true. 1In the case of zn ordinal logic it is zlways & judgment that
a forrmlzs is an ordinal formula, and this iz equivalent to judging
that 2 number theorctic proposition is true. In this case then the
requirement is that the reputed ordinal logic be an ordinal logic. .

for the expression of number theoretic theorems, in order that it way
be ﬁsed in metamathematicel discussions (cf 5,5).

Of the particular-ordinal logiés ve have discussed‘;[ﬁwp and 1QLP1
certainly will not satisfy us. In the case of J[&P(we are in no

better position than with a constructive logic. In the case of 4<l1,
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{and for that matter also JAHﬂ) we ars by no means certain that we 1
shall never obtzin any but true results, because we do not know
whether all the number theoretic theorens provable in the system P

are true, To take Jf&15 a8 a fundamental non-constructive logic for

metensthematical arguments would be most unsound. There remains the
gystem of Church which is free of these objectlons., It is probably

complete (although this would not necessarily mean mich) and it is

bevond reasonable doubt that it always 1aads to correct results 6.
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Th‘s ordinal logic arises from & certain gysten C in essentially
the same way as (\ aroge from P. By an argument siR1lar to one
occurring in § 8 we can show that the ordinal logic leads to correct
results if and only if C_ is walid; the walidity of C is proved in

Church{1], meking use of°the results of Church and Ro8ser f

In the next section I propose to deacribe another ordinal ;5gic, of
a very different type, which is suggested by the work of Gentzen,
and which should also be adequate fér the formalization of nunber
theoretic theorems. In particular it siould be suitable for

proofs of netamathematical theaorems (cf é 5).



In proving the consistency of a certain systex of formal logle
Gentzen (Gentzen [l]) has made use of the prineiple of transfinite
induction for ordinals less than Eo , and suggested that it is to be
expected that transfinite induction carried sufficiently far would

suffi.ce- to solve all problems of consistency. Another suggestion to.

‘base systems of logic on transfinite induction has been mede by Zermelo

(Zermelo [1}).1 In this section I prqpose to show how this metho? of
proof may be put into the form of & formal (non—conatmct;ive) logic,
and afterwards to obtein from it an ordinal logic. |

¥e could express the Gentzen zﬁethod of pfoﬁf fornally in this
w. Let us take the systen P and sdjoin’ to it &n axiom '{ﬂg— with
the intultive meaning that the W.F,F. Q. ‘is an ordinal i‘omul;,

whenever we feel certain that £ is an ordinsl formula. This i3 &
non-constructive system of logic which may easily be put into the

form of an ordinal logic. By the method of § 6 we nake correspond

to the systen of logic consisting of P with the sxiom £

9 adjoined &

logic formula L. PR L © 18 sn effectively calmzlabla function of.Q »

and there is ther::fore a formula Ael' such that A. ( -Q-) conv _Q
for each formula ,9_. . A; is certainly not an ommal logic unleas
P is valid, and therefore »consist.unt. This formalization of Gentzen's
idee would therefore not be applicable for the problem with which
Gentzen himself was concerned, Ior he was proving the consistency of
a system weaker then P. However, there are other ways in wnich the

Gentzen method of proof can bs formalized. I shsll explain one,
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beginning by describing & certain systen of symbolic logic.

The symbols of the calculus are 'F s X, ' s O,S .
R’sT\;A;E—,I 3@: { ? (; ),=V,andthe
compa ',', Ve uae capitélfﬁernan letters to stand for vartiable or un-
determined secuences of these symbols.
It' is to be understood that the relations that we are abdut to
define hold only when compelled to do so by the conditions we lay down.

The conditions should be taken together as a simultanecus inductive

~definition of all the relations involved.

Suffixes

1s & suffix. If 0 is & suffix then J° is o suffixz.

| l

Indices

. o /
lisaninde’x, 1r 7 isanindnxthenv is an index.

Numerical varisbles
If a‘/ is & puffix then X ZV is & numerical variable,

Punctional variables
If T iz a suifix end 7 is an index then ‘f’a“?isa.func-—
tional variable of index U .

Arguments :
(;')_ is an argument of index 'v . If [,(jl) is an argument

of index g and Ql i3 a term then [/01 %) is an argument of indlex \7 ! ,’

-
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!m:&a _
0 isammeral

It nis a numeral then 5( 7‘1/)15 a nunsral.
In metamethematical statements we shall denote the mumeral in
~ (r)r
which Soccurs,f'timeaby 5 (,O)).

Expregsions of given index
A ;unction&l varisble of indox \7 is ar expression of index j

R ,-S are expressions of index i ’ t respactively.

Ir 77/13 a numeral then it is also an expression of index ' .

' {
ﬂuppoae is an expression of index j 49« one of index \7

and& one of index vj “'; then (1/% and (A /(? are sxpress-

fons of todex J , whilst (l:,{? w[@@@) and (x%/?«)
&nd(/% 49 /ﬁ) are sxpressions of indaxj .

Function constanta
An expresslon of index j in which no Dmetional variable

occurs is a functlion constant of index j + If in addition ﬂ do
not occur the expression i3 called a primitive function congtant.
Terms
O iz a term.

Every zmmricnl variable is n term.

Ir /? is an expresaion of index- j and [w ) is ean argum&nt
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nflindnz \7 thqn/%//ﬁz) is a term.

Zquationg
If qfl and ?;_ are terms then Q’;_ : v»,_ 18 an eguut\iaz}.

Provab: able equa .tiong »
We iefine what i1s meant by the provable equations relative to

a given set of equations as axi0n8.

{a) The provable equations include all the axioms. The axioms
are of the form of equations In which the syabels /% , A , [,

/ » O ® ,’ d0 not appear.

{1
(b) 1f v?is an expression of index \7 and (’ﬁl) is an
nrgumnt of index \7 then

(T4g) (22 %5 %015 = qﬂw X

is a provable equation. ;

, .
{c) If /% is an expression of index j , and (z&Lj 1s an

argument of index \7 s then

(aap) ()= o (%, A%)

is a provable equation.

(d) If/igia an expression of index j s and /zﬂl) 1s an

a.rgument of index » then

(k'q)(wx,,) ()



-89

- 10-.1 provable egquation.

- (e) It /% ia an expression of index 7 and @/iu one of index
o j’ s and (ﬂ) iaanargumntofindexj then

(1) (L) = /g(wxg;(w})

is a provable equatim o

{£) 1t mu an expreasion of index [ then Tb{ 3) n

- is =« provable aquat.ion

{g) If /% is an expression of index \7 and ﬂ one of index.

jl“ and [ﬂ) an argument of inde:cj
(/{f Oc{)[,&Lo) _ ,@/w) '

‘ (4 © &) 0? S(o%,,),) = € (DX, SR (408 )

are provable equetions. If in addition t?/ is an expression of
| ‘ ‘
index j and

Rir( v S(:%s ) X.;) 0

is provable then

@}'W@)[JJ‘LSG 13) (’0‘“%('“5(’ B )>5(3 t:),
* -"”?)WW%S( %05)5)5)5)
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m@dﬂ&!@){wo)) = (1)

‘are provable.

(1) Ifa‘;‘-‘% and %:%’.am proveble where ?-'1 , ?;- . % .

and (‘E’_ are terms thenq'/ = (¥ and the result of substituting ?3

for ¢ at any partlicular occurrence in ¥ e¥ are provable equations.

(1) 1If :E_= (‘E_ia a provable equation then the result of substituting

any term for a partiéular nunericsl variable thrwghdut this equetion im

provable.

, o - /
(1) Suppose that /% s 1are expressions of index j , that / /% /
is an argument of index \7 not contaming the mmericnl variable x and

['01/0 /(gl(ﬂlO}ia provable. Also suppose that if we
add q(ﬁl 3@ ’%1 0L &€ } to the axioms and restrict (1) so that

it can never be applied to the numerical va-iable & then
/00’[[01/ 5(,‘3‘1_,)3) = ’%’1 /’OL 5[) BL))))

becomes a provable equation; in the hypothetlical proof of this eouation
this rule {j) itself msy be used provided that a different varisble
is chosen to take the part of %

Under these conditions /g[% 9& ) rg /,()l % )13 a pro-

vable equation,

| /
() Suppose that /g« 4(71 @/ are expressions of index \7

that [ I%} is 2n argument of 1ndex not eontaining the mmerical



variable & and that ?/ﬂo] /”L 0, ) and
i siny

) S 6 x )J) 0 are provable equations,
Suppose also that if we add

(oGl S6%,),) gi/ﬂ«%/ﬂw/ )

to the axiams, and again restrict (i) eo as not to apply to 32 then

/g«(«ﬁb%)): z%ll[»ﬁ/c?é)) | | (12.1)

becomes & provable equation; in the hypothetical proof ¢f {12.1) the

rule (k) may be used if a different variable takes the part of OO

Under these conditions (12Z.1) is a provable équstion.

¥e have now completed the definit_ion of a provable eguation re-
lative to & given set of axions. Next we shall show how to obtain
en ordinel logic from this calculus, The first step is to set up a
correspondence between some of the equations snd number theorectic
theorens, in other worda to ahow how they can be mterpretdd as pumber
theoretic theorems. let %b& a primitive function constent of index
t . /% describes a certain primitive recursive function ?( } de--

termined by the condition that for all - .hv) N e ‘he equation

,%[, s,0), s, 9),): I R

>0,)

shall be provable without using the axioms {2). Suppose also thst 4?

is an expression of mdexj + Then to the equation

/%7[)?‘, ) {?C"u))) =0
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we make correspond the number vt.hcrmratic thagrem whicl asserts t.hnt
for sach natural pumber ™ there is a natural mumber # such that
CP(w, u = 0. {The circumstances that there is more than one
sguation t.o. represent each number theoretic theorem couli be avoided
by a trivial ﬁodificatim of the eslculus.)

Now let us suppose soue definite method 18 chosen for describing
the sets of axioms by means of positive integers, the mull set of #xloma
being deacribed by the integer 1. By an argument used in é & there is
e W.F.F, 2. such that if  is the integer describing & set /& of
axions thnn Z (r) is & logic formula enabling us to prove just those
number theoretic theoroni sbich are assoclatéd with eguations provable
with the above described calculus, the axioms being just those des~
cribed by the mmber r. |

I shall show two vays in vhich the cmatmction of the ordinal
logic msy be complntad. \

In the first method we make use of the theory of genersl recursive
functions (Kleene [2]). Let us counsider all equations of tha form

RLS“0), 590))=S00)  an

which are obtainable from the axioms by the use of rules (h), (i). It
is a consequence of the tfmorém of equivalenca of /\ ~definable and
general recursive function (Kleene [3]) that if F (m , h ) is ran:,r
)\ ~Jefinable function cf‘ two variables then we can choose the axioms

so that {12.2) with = v( u) 18 obtainable in this way for each
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pair of natursl numbers 4 , i , end no equation of the form

500,) < 80 ) (mtn) e

is obtatnable. In particular this is the case if Y(“, 4) is de-
fined by the condition that

__g(y,g) conv S(Z’) implies P > rw u)

Y[O)'h)~.0m M?O/‘ r(0,0)= &
where .g. {5 an ordinal formula, There ‘ia s method for obiaining the
axioms given the ordinal formmla, and consequently a formula %c
such that for eny ordinal formula -Q-) Roc (L2 ) conv /M vwhers M is

the integer describing the set of axioms corresponding to -_(_2 . Then

the formula

, . | ) :
A* 5 Ao Z (e (w))
a
is an ordinal logic. Le\t us leave the proof of this aside for the
pfesent.

Our second ordinalrlogic is to be conatructed by a method not

unlike the one we used in constructing A?. %e begin by assigning

" ordinal formulse to 21l sets of axioms satisfying certain condltions.

For this purpose we ggain consider that part of the calculus which
13 obtained by restricting texpressions! to be functional variables
or 7{ or S and réstricting the meaning of 'térn‘ accordingiy; the
new provable equations are given by condiiions {2), (n) ,> (1), together

with an extra condition (1)
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(1) The equutian

7\)()0 5() 1)))) o

is proveble.
Be could design a machine which would obtain x11 equatiors of
the form (12.2), with M F N, provable In this sense, and 2ll of
the Zorm (12.3), oxce;)t that 1t would cease to obtain any more equations
when 1t had once obtained one of the latter *contradictory’ equations.

From the ﬂascriptién of the machine we obtain a formula -_g such that

-Q(-/-—) conv Z if "l RCJ(M‘l)C 0))/ S(“-')()O))/) = 0
is obtamed by th& mach‘me ‘ {h )
_Q_[IM n) conv 1 if R[) S(k-‘)/)(]))) /0J) ):' o

{s obtained by the machine

.Q(IM w Yconv X alwa,rs

—-,_

The £ rmula _Q is an effectively calculahle function of the set of
sxioms, and therefore also of m 3 conaewuentl, there is a formula M
such thet M(“‘) conv _Q when W describes the set of axic'na.‘ Now
10t Ciw be & formila s;;ch that 1f b is the G.R. of a forma M(% )

then ( ( b) cany v, but otherwise Clu /é) conv 1, Let
_A.; - Awa. T‘(Ku-'Z((‘"’(T“[‘?"“) a) |
Then A (_Q H/ conva lfana enly if.Q conv M(“'\) whare

describea a get of axioms which, taxen with our calculus am‘fices
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s

to prowve the equation which is, roughly speaking, equivalent to |
' A 1a dual?, To prove that _/\_: 13 an ordinal logic it suffices
to prove that the ealoulus with the exioms described by he proves
only true number theoretic theorems wnen _Q is an ordinal formula.

This condftion on M may also be ,ex.pressed in this wa;y. Let us put

_ (a) ()
wm{< W if we can prove R()S [Jo))) S [3 O?)/);O
with (a), (B), (1), (1)1 tbe condition is that M << N be & well

ordering of the natural mimbers 2und that no contradictory equation

(12.8) be prmrablo wit.h the same rules (u), {n), (1), (1). Let us
say that such s set of axioms is admissible. A is an ordinel logic
if the calculus l.eada to nano but true nusber thaamtic theorems when
an admissible set of axiorua 15 uaed, o

In the case of A $ ﬂ!C ( -_-Q_-) describea an admisaible seﬁ
of axioms wlmnefer g. is an ordinal formula. _A:; will ‘herefore
be zn ordinal logié ii' the celculus leads to correct results when
admiasible axions are used. 7

To prove thal admissible axioms have thiﬁ propérty I shell not
attempt to do more then show how interpreta’tions can be gilven to the
equations of the calculus so that the rules of inference (a) ~ (k)

becoms intultively valid methods of deduction, and so that the inter-

pretation agrees with our convention regarding numbe: theoretic theorems.

Each expression is the name of & function, which may be only‘

partially defined., The expression S correaponds simply to the guc-

-cessor function, Ifag i either (/z or a funétiona.l variable and is
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of index (7 { P*‘l symbola in the index) then it corresponds to &

function 3, .of 7') natural numbersz defined asg rpllown. If

0 > o (he) ),
(STl s™o),. ., sPho))- ST

is provable by the use of (a), (n), (i), (1) only, tuen 8("1; ‘.- V‘.-F)

has the velus ﬂ » It mey not bte defined for all erguments, btut its
~value is elwsys unique, for otherwise we could prove a 'contradictory!
equation and M (‘:‘) would then not be sn ord'in'nlr formula., The
functions corresponding to the other expresaions are esseﬁtidly der-
fined by (b) - (f). For example if 3, ja the function comﬁponding

) /
to ’? and g that corresponcing to T '?) then
3/(;-‘, k,_,.-.)»l:ué’; m) = 3’[,.', AR [)

The values of tfm functions are clearly unizue (when defined at all)
if»giva;n by one of (b) -b(e).‘ The case (f) is lsss obvious since the
function defined appears also in the definiens., T shall not treat the
case of é{g o) 1%,) s this i3 the well inown definition b5 primitive
recursion, but let us show the values of‘ the function corresponding
to ég / ﬂ ./ % ) are unique. ¥ithout loss of generality we may
suppose that ( /()Z) iz of index / « ¥e have then to show that if

l\[ 4) 1s the finction corresponding to and r(m, n ) that
corresponding to (R s end k( u v “r) & given function and &

a given natural number then the equations | |
S0): e )
L(mv2): k[ h(mez)me2, £(A(ne1))  p)
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do not ever assign two different walues for the furction ¢ ( lM )
Consider those values of V¢ for which we obtain more than ome value of
((r) , aad suppose that there 18 at least one such. Clearly O
18 not one for £(0) can only be defined by ¥) . As the relatton <<
is & well ordering there is an integer ¥, @uch that ¥, >O} 4(r,)
is not unique, and if $< ¥, and £(5) 18 not unique then r, <L § .
Potting Se A l’o) we find alse S <K ¥, ﬁhich is impoazible.
There iz therefore ﬁo vslue for which we obtaln more than one value
for the function £(¥),

~Qur interpretation of expressiorns as functlons give us an im-
mediate interpretstion for equations with no nvmerical verisbles. In
genersl we interpret an equation with numerical variables as the
conjunction of all equations obtainsble by replacing the veriablea b
numersls. With thia interpretation (h), (1) are seen to be valid

methods of proof. In (j) the provability of

vg(ﬂ%&,n Gy (A S6%0))

when ,@,{,ﬁb KH ,q,l[,% )(”) is psaumed to be mter—

preted a3 maning that the i1mplicaticn between these equatiana holds

for all substitutions of numerals for X‘ . To gustirfy this one

should satisfy oneself that these implications always hold when the

hypothetical proof csn be carried out. The rule of procedure {j)

i3 now seen to be aimgl& nathematical induction. The rule (k) 1is a

férm. of tranufinife ‘inductioﬁ. In proving the validity of (k} we

wiy again tmpposo [ﬁL) is of index : + Let }'(1« u) &(u‘) % [I«) /\(14)
ha the functions corrasnonding mﬂp@cuwl;y te 7\) l(g /% —v?/
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Ye shall prove thatis_f 3(0)= 91[0) end r(4(w),u)=0 for
each positive Integer h and %( h+1) = 4 2 (h+ 1) woenever
g(t\(h-f-l)-—g/( h (m—l / then 8(“) - 31 14) for each natural

pumber N . ¥e consider the class of integers W for which 8[‘4) 3‘ p (w)

18 not trus. If the clase is not vaid it hss 2 positive menber vﬁ

which precedes a‘..l other members 1 the well ordering £ . But h( hp)
is another member of the class, i‘or o’*herwim we should have
8 ([‘(ho ): %l(A(ho)) and therefore %[ho):gl/qaji.e.
h, would not be in the class. This implies A4, L& (n ») contrary
. \; . ) . "

to k[ A[“o)/_“a/ - 0 . The class is therefore void.

It should be noticed thei m= do not really need to make use of
the fact that __@ i8 an ordinzl formula. It suffices that ..9 shouid
satisfy conditions (a) - (e) {p.29) for ordinal formulae, and in
place of (£) satisfy (f!')}. |

om—

(£') There is no Tormula [ such that [ ( 4 ) is convertible

to a formula representing a positive integer for sach poaitive integer

"W , snd such that ._Q_. [T[ﬂ), h ) conv 2, for each posit'im,
integer A for which __Q_.. ( G conv 3.

The probloﬁ as to vhether a formula satisfles conditions {a) - (e),
(£') 1s number t‘moretic. If we use "'omuluo satisfying these conditious
instead of oxdinal formulae with _A, we have a non-congtructive logie
with certain sdvantages over ordingl logics. The intuitive Judgments
that mst be made are all judgments of the truth of nuxber theoretic

theorems, Ye hawvs seen in é 9 thant the connection of ordinel logics
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with the classical theory of ordinals is quite superficiel. There
aeen. 1o be goéd ressong therefore for giving attention to 6rdina1
formulse i.n this modilied ssnse. | |

The ordinal loglc .A. appears to ve adequate for moat purposes.
It should for instance be pqssible to carry oul Gentzen's proof of
conalstency of number theory, or t‘w proof of the 'miqueness of the
normal form of & well-formed formula {Church and Rosser [1]) with owr
caleulus and a fairly simple a@t of axiors. How far this is the case
can of course only be determined by experiment.

One would prefer that s non-constructive system of logic based
on transfinite induction were rather simpler than the ane we have
described., in particular it would seem that 1t a’nm_xld be possible
to eliminate the necessity of stating explicitly the validity of
definitions by primitive recursions, as this principle 1tseii’ can
been shomn to be wvalid by transfinite induction. It is possible to
make such modifications in the systeaz, even in such a way that the
resulting syatem is still complete, but no real rdwantege is gained
by doing so. The effect is alwaeys, so far as I imow, to restrict the

clase of formulae provable with a given set of axioms, so that we

obtain no theorems but trivial restatements of the axioms. We have

thqrofore to compromise between simpliclty end comprehensiveness.
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Abbreviation

Index of definitions

Page

58

42

42

48

94

-2

40

42

68

for definite well-formmed formulae are listed alphabetically.

Abbreviation

Iug
Th
4
L e

ds

(/7)\m.L

Rec
R

Swun

No attempt is deing made to list underlined formulae as their

meanings are not always constant throughout the paper. Abbreviations

Page

42

24

93

67

42

69
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{ .

vV .
Vo .
W,
w'
W
Z .
™.
S .

(The following refer to

Page
. 48
. 42
26, 27
. 74
. 23
23, 24
2%
. 65
- 26

. 3

4)1~ inelusive(logic formula)

Axiomatic {class or property)

Computable functi-n

Completena;s, of clas: of logics

Convertible

Dual (i .F.%.)

of logic
of ardinal logie

Abbreviation

1-10 only)

/\.l

Gr

74

" 86

93

55

92

15

Bad o

W
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offectively calculable functi n . . -
Emmerate(to)

Formnlly definable function

Genaral recursive funection

Godel representati-n (G.R.) N . .
Imnediately convartiblé ’ - . .

Invariance (of ordinal logics)

59

(see also 63, 71)

Limit syastom .

Logic formmla, Logle o . - .
L8
Rormal form N . - « 2,
Mumber theoretic (thsorem or problem) . .
omcl‘ - Py - -
Ordinal . . - .
Ordinal formla - . . .
C-K ordinal farmula
Ordinal logic - o - i
Prinitive recursive (function or relsti m) 11,

Reocursion forml-

45

22

11

2 848 B

&

3




Remrcsentation of omdinals, by ordinal formulase _
by C-K ordinal formulae .

Standardized logic

Validity of system
¥iell fommed formula (ii.[.F.)
Well ordered series

Miscellansous (in order of appearance)

/\ ~definable function

(" between ¥.l.F.

Class W , systems C

C[ BT ¢ R acquor;iinal

M‘% C ’EKOJ Yo]

2 R

. 29

33

. . 22

. . 55

. . 44

. - 28

. . D

. - 32

. " 33

. . 44
. - 4§

49 (footnote 16)
. . 52

. 55

. 73,74
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