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Summary. Turing’s seminal 1952 paper on morphogenesis is widely known. Less
well known is that he spent the last few years of his life further developing his
morphogenetic theory and using the new computer to generate solutions to reaction-
diffusion systems. Among other things, he claimed at one point to be able to explain
the phenomenon of ‘Fibonacci phyllotaxis’: the appearance of Fibonacci numbers
in the structures of plants. He never published this work, but did leave a nearly
complete manuscript on morphogenesis and lattice phyllotaxis, together with more
fragmentary notes on Fibonacci phyllotaxis. I discuss evidence the that he developed
a number of key ideas close to modern thinking, and tantalising hints that he
came very close to a mathematical explanation of how the ‘daisy grows’ into these
patterns.

1 Introduction: Turing’s last, lost work

As this volume attests, Alan Turing is now well known as a pioneer in the log-
ical and technical development of the computer. He is also widely recognised
in mathematical biology for his discovery of the Turing instability, which
generates pattern in reaction-diffusion systems. Less well known is that he
spent the last few years of his life developing a morphogenetic theory and
using the new computer to generate solutions to reaction-diffusion systems.
Some of this biological work was published in his lifetime; some, thanks to
the editors of his Collected Works, was eventually published posthumously,
and some has been preserved unpublished, mainly in the archives of King’s
College Cambridge'. The paper published in his lifetime has turned out to
be seminal and widely cited in the mathematical theory of biological pat-
tern formation, but the rest of his researches have remained obscure and
ill-understood. It is the purpose of this paper to interpret some of this last
work of Turing’s. In particular, one of a number of problems he was trying to
solve was the appearance of Fibonacci numbers in the structures of plants,
and I will describe this problem and speculate about how far he succeeded
with it.

V' A bibliography of Turing’s work, published and unpublished, is main-
tained by Andrew Hodges at www.turing.org.uk; details on work rel-
evant to morphogenesis including sources wused in this paper is at
www.swintons.net/jonathan/turing.htm; see also the Turing Digital Archive:
www.turingarchive.org
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I begin by describing briefly the problem of Fibonacci phyllotaxis, and
then Turing’s basic theory of reaction-diffusion systems. Then I describe Tur-
ing’s geometrical lattice theory, and finally, and more speculatively, his appli-
cation of reaction-diffusion theory to the Fibonacci problem, and the crucial
introduction of growth to the analysis. The last decade has seen rather suc-
cessful mathematical explanations of the problem Turing was trying to solve,
and I will describe these briefly to explore how much Turing might have
anticipated them.

2 Fibonacci phyllotaxis

Phyllotaxis means here the arrangement of structures, such as leaves or flo-
rets, in plants. To see the phenomenon of Fibonacci phyllotaxis, consider
the arrangement of side branches on the main stems of a plant such as the
one in Figure 1. The Figure draws ‘obvious’ spiral or parastichies through
these adjacent branching points. The parastichy number for a spiral counts
how many such spirals fit onto the cylinder, or equivalently how many points
around the cylinder but not on the spiral have to be skipped in the vertical
direction between two points of the spiral. Thus one prominent parastichy on
the left hand slice of the specimen is a 5 parastichy because there are four
other branching points spread around the cylinder between any two consec-
utive points on the spiral. The parastichy in the other direction is a 3 paras-
tichy and the pair is called a (3,5) parastichy pair. A remarkable fact about
the specimen is that, although it exhibits a number of different parastichy
pairs, each of these pairs consists of two adjacent Fibonacci numbers from
the sequence 1,1, 2,3,5,8,13,21, 34,55,... in which each number is the sum
of the preceding two. Yet more remarkable is that this property can be found
in very many examples in many different species of plants. Explaining this
ubiquity is the problem of Fibonacci phyllotaxis [12]. Perhaps the most strik-
ing examples of Fibonacci phyllotaxis of all occur in the sunflower Helianthus
annus and the daisy Bellis perennis, where the florets of the flowerhead are
arranged in spirals, with the number of spirals clockwise and anticlockwise
being successive and rather large Fibonacci numbers (Figure 2).

The appearance of these numbers, or variants on them, is intimately re-
lated to the divergence angle, the difference in angle between successive points
on the stem. If that angle in a cylindrical lattice is close to a simple function
of the Golden Ratio, then Fibonacci numbers naturally appear. Moreover
the Golden arrangement typically has the property of optimal packing. All of
these relationships have been closely studied in the mathematical phyllotaxis
and number theoretic literature (reviewed in Adler et al. [1]; Jean and Barabé
[12])), and each of them has been adduced at one time or another as the ex-
planation for Fibonacci phyllotaxis, often with varying degrees of mysticism
or arguments from evolutionary optimality attached. Turing thought of the
problem in terms of explaining the Fibonacci numbers of the parastichies,
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Fig. 1. Parastichy systems ranging from (3, 5) through (5, 8) and (8, 13) to (13, 26)
on a single Fuphorbia wulfenii stem. From Figure 8 of Church [7].

and it is this approach I concentrate on here. According to Adler ef al. [1]
the first to explicitly recognise that Fibonacci numbers were involved were
Schimper [25] and Braun [5].

When and where did Turing’s interest in this problem come from? The
title of this paper comes from a sketch drawn by his mother (reproduced
opposite the title page in Saunders [24]) showing a schoolboy paying attention
to the daisies rather than a hockey game. We know that at school he was well
acquainted with D’Arcy Thompson’s classic On Growth and Form [27] that
discusses it; decades later, Turing is recorded as discussing daisies and fir-
cones during off-duty periods at Bletchley Park [10, p. 207-208]. When Turing
returned to Cambridge for a year in 1947-1948 he attended the undergraduate
physiology lectures of Lord Adrian, and Hodges has plausibly speculated that
his prime interest by now was the possibility of a logical description of the
nervous system [10, p. 372]. But we have little concrete idea of his thinking on
the subject until 1951. In a correspondence with the zoologist JZ Young, after
a discussion on the needs of a physiological theory of the brain he continued:

... my mathematical theory of embryology...is yielding to treat-
ment, and it will so far as I can see, give satisfactory explanations of
(i) gastrulation
(ii) polygonally symmetrical structures, e.g. starfish, flowers
(iii) leaf arrangements, in particular the way the Fibonaceci
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Fig. 2. A sunflower head, with some of the florets removed to show the

(34,55)
parastichies. From Figure 15 of Church [7]. © AH Church 1904.

series (0,1,1,2,3,5,8,13,...) comes to be involved
(iv) colour patterns on some animals, e.g. stripes, spots and
dappling

(v) pattern on nearly spherical structures such as some Radiolara
2

Whatever the original trigger, these were strong claims and it was the
purpose of this paper to examine why Turing felt able to make them and
claim (iii) in particular. In the same month he also wrote in a letter that

Our new machine is to start arriving on Monday. I am hoping
to do something about ‘chemical embryology’. In particular I think I

can account for the appearance of Fibonacci numbers in connection
with fir-cones.3

He certainly could do something about chemical embryology. By Novem-
ber of that year he had submitted a paper to Philosophical Transactions. This
paper, The Chemical Basis of Morphogenesis[28] has become celebrated in
its own right for introducing what is now known as the Turing instability,
and provides a framework for understanding Turing’s later, unfinished work.

2 AMT K.1.78; letter to JZ Young 8 Feb 1951
% Quoted in Hodges [10, p. 437], letter to M. Woodger February 1951.
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In 1952 he wrote that he had ‘Had quite a jolly time lecturing on fir cones™
in Cambridge, and in 1953 wrote to HSM Coxeter:

... During the growth of a plant the various parastichy numbers
come into prominence at different stages ... Church is hopelessly con-
fused about it all, and I dont know any really satisfactory account,
though I hope to get myself one in about a years time.®.

Between 1952 and 1954 he drafted parts of a paper on the Morphogen
Theory of Phyllotazis [29]. This work was left incomplete, and indeed Gandy
wrote, after Turing’s death, that

When I was staying with Alan the weekend before Whitsun he
also told me more or less where the computations had got to; but
since his methods were so individual, he was unmethodical, I imagine

it will be almost impossible for anyone to go on with the programme
where he left off.5

In fact Nick Hoskin did manage to make some progress with preparing the
work for publication, and Bernard Richards provided a third section based
on the MSc thesis he started under Turing. But the resulting typescript was
not published until 1992 (Saunders [24]) and has been little noticed since,
although there was a recent discussion by Allaerts [2]. More details of the
archive papers and their relationship to the published volume can be found
at my website (Swinton [26]). We will return to their contents after discussing
the Turing instability.

3 Where do spots come from? The Turing instability

This section provides a brief non-technical discussion of the Turing instabil-
ity introduced in Turing [28]. Turing provided a hypothesis to explain the
generation of pattern when smooth sheet of cells develop pattern during de-
velopment in a wide variety of settings including the formation of leaf buds,
florets, skin markings, and limbs. According to this hypothesis, chemicals
called morphogens generate organs when present in sufficient density, and the
pattern is created through mechanisms of reaction and diffusion. The corre-
sponding reaction-diffusion models are by now well known to mathematical
biologists, and for the mathematically inclined the books by Meinhardt [17]
and Murray [19] can give much more detail.

4 AMT D.4; letter to R. Gandy Nov 23 (prob 1952)
5 Letter from AM Turing, 28th May 1953, cited in [§]
5 AMT A.8; letter from R. Gandy to M. H. A Newman.



6 J. Swinton

3.1 Reaction...

One way of understanding the reaction-diffusion process is to borrow an anal-
ogy which Turing himself used in a slightly different model: cannibals and
missionaries (Figure 3). An island is supposed to be populated by a popula-
tion of cannibals and missionaries. The missionaries are all celibate and thus
depend on recruitment from the external world to maintain the population
as its members gradually die. Cannibals also die, but can also reproduce,
so that the population naturally increases. However when two missionar-
ies meet a cannibal, the cannibal is converted to missionary status. (If this
seems a rather imperialist island it might be worth pointing out that under
a commoner interpretation the cannibals are the growth promoters and the
missionaries are the poison). This tension between production and transfor-
mation means that a balance is reached when both populations are mixed
together [19, p. 376-378]. If this balance is disturbed by a small amount of
noise, the tension will act to restore the balance: the system is stable.

3.2 ...and diffusion

Now we imagine that the two populations, instead of mixing completely to-
gether, are spread out in a thin ring around the rather narrow beach of the
island. Now individuals react (that is, reproduce or convert) only with their
immediate neighbours, but they also move around at random in a diffusive
way. Moreover the members of the two populations move at different speeds:
the missionaries have bicycles and move faster. This is enough to destabilize
the system. For if there is at any point a small excess of cannibals, say, then
this will be followed by excess ‘production’ of more cannibals, and then of
more missionaries (since they have more targets for conversion). Without the
spatial dimension the extra production of missionaries would in turn reduce
the cannibal excess and the system would return to balance. But because
the missionary excess is transported away more quickly, a pattern develops
in which there is a near excess of cannibals and a far excess of missionaries.
Moreover the distance between these zones of relative excess is determined by
the interaction between the reaction and the diffusion: a length scale, which is
what is required for the emergence of pattern from non-pattern, has emerged
from the dynamics.

3.3 Where did the bicycles come from?

The key to making this idea work is the missionaries’ bicycles: more tech-
nically that the inhibitor morphogen has a higher coefficient of diffusivity.
Once the reaction-diffusion system is set up, a simple linear analysis makes
this an obvious requirement for heterogeneity, but that was an analysis that
no one, to Turing’s knowledge, had done at that time. We have no record
of Turing’s thought process in developing the model idea and whether the
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Fig. 3. From AMT/C27/14. © PN Furbank.

diffusivity constraint came before or after the reaction-diffusion model itself.
His analysis in Turing [28] and Turing [29] in terms of Fourier modes would
have been second nature to him: for example his pre-war project to com-
pute the zeroes of the Riemann zeta function using an analogue computer
used a similar basic analysis. The formal theory in The Morphogen Theory
of Phyllotaxis shares some structure with the then new quantum mechanics
he had learned as a student in Cambridge, but presumably many of the tech-
niques were in the armoury of any applied mathematician at the time. As
Allaerts[2] points out, Jeans 1927 book on Electricity and Magnetism, which
Turing cited, is a source for many of the techniques, particularly spherical
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harmonics. But the source of the key scientific innovation is harder to pin
down. It’s not even obvious that Turing himself appreciated it that it was
key: it is hardly emphasised in either Turing [28] or Turing [29].

Turing was not alone in arriving at these ideas. Jeans[l1] states that
similar ones were also introduced by Kolmogorov, Petrovski and Piskunov
[14] and Rashevsky [22], although they remained largely unknown in the
West for many decades; Nanjundiah [20] discusses the (lack of) influences
in more detail. The 1952 paper actually dealt with a number of important
and more complex issues usually glossed over in the standard undergraduate
accounts. Turing also discussed tricky issues of mode selection and the effect
of noise, and extended the model to two dimensions to produce an example
of dappling.

By the time of the drafting of The Morphogen Theory of Phyllotaxis, the
theory had been developed yet further, particularly by a representation in
terms of spherical harmonics, and by an application to the particular case of
a sphere, done as an MSc project by Richards (Richards 1998). This more
general theory, which has been recently reviewed by Allaerts[2], is, though
relatively technical, conceptually a fairly straightforward development of the
original idea.

3.4 The Turing instability: summary

In one dimension, then, the Turing instability introduced in the 1952 Trans-
actions paper provides a natural mechanism for generating spots. Such pat-
terns emerge from the interaction between the length-scale implicit in the
reaction-diffusion dynamics and the geometry of the arena. This has provided
a central paradigm for modern morphogenesis, at least from a mathematical
perspective[13]. These patterns have been seen in real chemical systems, but
it remains a challenge to explain ‘stripes, spots and dappling’.

4 Lattice generation

So far, the discussion has been in terms of a one-dimensional pattern wrapped
around a ring. What happens if we have the same reaction and diffusion mech-
anism but now allow it to act in a two-dimensional arena? In terms of the
cannibals and missionaries, we might imagine that the beach of the island is
now rather wide (relative to the length scale defined above). In this case, the
Turing instability can generate not a ring of points but a lattice of points.
(Under suitable boundary conditions, other patterns such as stripes are pos-
sible.) Might this by itsell be enough to explain the occurrence of Fibonacci
phyllotaxis? With no constraints, (i.e. a cylinder of large enough radius, and
ignoring the complexities of the inception and quenching of pattern forma-
tion), the instability typically generates hexagonal lattices (Murray [19]: see
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Fig. 4. A hexagonal lattice (AMT/K/3/1). © PN Furbank.

an example in Figure 4) and this class of lattices certainly include some Fi-
bonacci ones. But it also includes many that are not Fibonacci.

Might it be that there are other constraints acting to select Fibonacci
ones? First there are the geometrical constraints arising from the particular
arena. Patterns on a cylinder may be different from those on an infinite plane
where the periodicity constaint does not apply, and different again from those
on a cone, but this does not promote any special Fibonacci structure. Then
there are the dynamical constraints: the pattern does not suddenly appear,
but emerges as a result of nonlinear interactions between morphogens over
time. Finally there are growth constraints: during the emergence process,
the arena itself may be growing with the plant. More discussion of these
constraints is put aside until after a discussion of describing the patterns
themselves.

5 Geometrical phyllotaxis

In this section we put aside the radically new contribution of Turing (a mech-
anism for dynamic production of lattices) to discuss his (slightly) more con-
ventional treatment of the static properties of lattices, more commonly called
geometrical phyllotaxis. Turing consolidated a general theory of lattices on
cylinders
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...expounded ...by some previous writers but often in a rather
unsatisfactory form, and with the emphasis misplaced”

which was (mostly) published for the first time in 1992 in his Collected Works
[24]). This kind of analysis has a long history, at least as far back as the broth-
ers Bravais (Figure 5), but Turing’s geometrical theory added several new
insights: flow matrices, the ‘hypothesis of geometrical phyllotaxis’ discussed
below, and the ‘inverse lattice’, a Fourier representation of the patterns es-
sential to understanding many of the archive pictures though not discussed
further here.
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Fig.5. An early geometrical theory of phyllotaxis, from Bravais and Bravais [6].

5.1 Turing’s lattice theory

Part I of the Morphogen Theory of Phyllotaxis [29, p. 49] is a [airly coherent
and fully worked out manuscript. Two theorems are of particular relevance
here. For any lattice, such as the one in Figure 5, there are not just two rather
obvious parastichies (here 2 and 3 are drawn with dashed lines) but a whole
series of less obvious ones, which can all be defined relative to lines from
the origin (i.e. the point labelled 0) through the other numbered points. The

7 [29, p. 62] Turing is not the only writer on mathematical phyllotaxis to adopt this
tone.
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1-parastichy is the solid line, and the eye can pick out the 4 parastichy by
visualising a line through the points numbered 0 and 4 and 8 and so on. What
Turing called the ‘principal parastichies” were the ones in which the nearest
points in the parastichy were closest to the origin — in other words Figure 5
has principal parastichy (2,3) because the points numbered 2 and 3 are the
ones closest to the point numbered 0. (The geometrical details are related
to but different from, say Jean [11]: primarily because Jean also needs to
ensure that the parastichies wind in opposite directions round the cylinder).
A second key theorem is that the third parastichy (in this case 1 since 1 is the
next closest point) must be the sum or difference of the first two parastichy
numbers, a theorem Turing proves neatly on page 57 of Turing [29].

5.2 ‘Hypothesis of Geometrical Phyllotaxis’

After this theory of lattices on cylinders, Turing went on to consider lattices
of more variable geometry. This raises the question of what kinds of trans-
formations of parastichy numbers are possible when a phyllotactic lattice is
deformed. As it is deformed, the principal parastichies will in general remain
unchanged. They will only change when a new lattice point from a different
parastichy moves so as to become closer to the origin, but generically the
point, that does so must have previously been the third parastichy. Thus one
of the two principal parastichy numbers, together with the third parastichy
number, will become the new principal parastichy number. Turing showed
[29, p. 72] that if that third parastichy number (in the example above, 1),
never lies between first and second parastichy number (here (2,3)) then a
Fibonacci property, once begun, would persist. This constraint he named the
Hypothesis of Geometrical Phyllotaxis (HGP).

It was this result which was surely the cause of Hoskins’ view, reported
in Max Newman’s 1955 Royal Society memoir [21], that Turing had shown
that a Fibonacci system, once established, would always remain Fibonacci.
But the truth, as Turing recognised [29, p. 72|, is that this relies on the
HGP being true and the theory so far provides no reason why it should be.
However this idea is still worthwhile: the key insight it embodies is that of
continuous change. Phyllotactic lattices are not laid down all at once on an
infinite cylinder: they are produced locally, node by node, and the resulting
pattern is also deformed by growth.

6 Dynamic phyllotaxis

The Turing instability by itself, then, can’t provide an explanation for the
generation of Fibonacci phyllotaxis, as Turing well understood. For when
discussing phyllotactic systems defined as solutions to the reaction-diffusion
model defined without growth constraints, he wrote
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[...] the phyllotactic systems of botany do not arise in this way®

However there are strong indications in Turing’s later manuscripts, partic-
ularly the fragmentary Outline of the development of the daisy®, that he had
conceived an additional mechanism to provide that explanation. As hinted
above, that mechanism is that there is a small arena in which the Turing
instability is at work, laying down spots in lattices and then leaving them
behind as the arena follows the growth of the plant. Moreover that arena
itself changes, growing in diameter, providing a continuously changing lattice
to which the the theories of geometrical phyllotaxis could be applied. The
first evidence of this is in Morphogen Theory of Phyllotaris Part I; in section
13 Turing establishes a formalism of flow matrices for the change in lattice
parameters with a parameter called time, adding that

...a convenient way of picturing flow matrices is to imagine the
change in the lattice as being due to the leaves being carried over the
surface of the lattice by a fluid whose velocity is a linear function of
position [29, p. 75].

This was a way of modelling phyllotactic patterns, building on the con-
tinuous change models of Richards [23]. But this remains an essentially static
picture of spots being passively transported over a changing geometry. What
Turing was able to go on and create, with the aid of his new spot-generation
model; was a concrete model for dynamic phyllotaxis.

In the later work, Turing typically expressed what we now think of as his
reaction diffusion model in operator notation, with forms similar to

aa_(t] = p(VHU +GU? — HUV (1)

V= 4(VHU? (2)

with (V%) = I(1 + V2/k3)? and ¥(V?) = 1/(1 — V?/R?); compare equa-
tion II1.1.2 of MTP [29, p. 107]. Here U(x,t) is the morphogen and V(z,t)
is the ‘poison’; the v function represents the implicit solution of its par-
tial differential equation in terms of the slower diffusing morphogen. The
H terms represents the effect of the poison on the morphogen, the G term
the morphogen’s autocatalytic nature, and the ¢ term its diffusive nature,
parameterised by the natural wavenumber k.

However in Outline of the Development of the Daisy'°, there is a crucial
extra spatiotemporal term I(z,t)U:

8 AMT/C/24/68.

9 Most of the text of this paper can be found in Turing [29, p. 119-123]. An
alternative version, closer to the manuscript, can be found at my website.

1% The Saunders edition [24] has a typo for the H and the ¢ here.
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aa_(t] = (VAU + I(z,t)U + GU? — HUV (3)

V =y(V)U? (4)

An even more revealing version of this equation is in AMT/C/27/28 (Fig-
ure 6). This additional I term is designed to capture the effect of the variation
in the geometry of the arena for morphogenesis with time due to growth of
the underlying tissue: see the picture of a growing apical meristem region in
Figure 6.

&
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e

Fig. 6. A version of the morphogenesis equation allowing for growth in the apical
meristem region and the possibility of dynamic phyllotaxis. Also (below the first
line) a list of the numerical parameters which must be specified to allow computa-
tional solution. From AMT/C/27/28. (© PN Furbank.

Turing not only conceived this idea; he clearly made substantial progress
with a numerical implementation of it. At one point of the Daisy draft , he
comments on the number of parameters needed,

when actual computations are being carried out the number of
quantities to be specified is again increased..

' in a manner suggesting that this had been done in practice. Moreover one of

the subroutines that has survived is labelled KJELL'?, and AMT/C/27/C25
(shown in part in Figure 7), entitled Kjell theory, works out the algebra in
Fourier space of the coefficients of an equation such as the daisy one, including
the crucial growth term.

1 AMT/C/24/12; omitted from the Saunders version
12 This dates it to post summer 1952: see Hodges p476.
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Fig. 7. KJELL theory. From AMT/C/27/25, beginning a series of developments
designed to allow the dynamic growth equations of Figure 6 to be calculated by
computer. ©) PN Furbank.

Also in the archives are a number of solution plots (e.g., Figure 8). Based
on their form they are probably solutions of the reaction-diffusion equations
of forms similar to Equations 1, 2 or Equations 3, 4. Whether they are di-
rectly relevant to the Fibonacci problem or as more general illustrations of
morphogenesis is hard to say. My speculation is that they are the former,
since there is little evidence of any other computationally active project.

7 Routes to phyllotaxis

In addition to direct numerical simulation, there is evidence that Turing
explored a more analytical approach to the problem. The best evidence comes
from several sheets in the National Archive for the History of Computing!?.
One (Figure 9) is a diagram displaying possible parastichy transitions, from
the homogenous (Hom) state up to 4+ 7 parastichies. A similar sheet includes
the comment

Probable paths: Hom — (0)p — (0+1) > (14+1) > (14+2) —
(2+3) > B3+5)... 14

The question is what Turing meant by ‘probable’. It might be a simple
harking back to the hypothesis of geometrical phyllotaxis, but on another
sheet (Table 1: MAN/M/8) he classifies a number of possible transitions by
more empirically geometric observations.

13 At Manchester University (http://www.chstm.man.ac.uk/nahc/). Turing papers
are in NAHC/TUR/C2 and C3.
1 MAN/M/1. This is my foliation, dctails at Swinton [26].
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Fig. 8. Left: Probably a solution of a reaction-diffusion equation. One of the ear-
liest (1951-1954) uses of computer graphics in biology. From AMT/K/3/8. Right:
Enlargement of AMT/K/3/8 showing individual grid points as pairs of base 32 dig-
its (@=0,/=1,...V =30,£ = 31), lowest significant digit first, and contoured
on the basis of the most significant digits. (© PN Furbank.

GRAPHICS SHOULD BE VERTICALLY ALIGNED

These kinds of parastichy transitions were not entirely new: van Iterson
[30] studied static sphere packings and generated a parameter map of all pos-
sible such packings (Figure 10). Turing at one point dismisses the ‘touching
circles hypothesis’ — that each new point is introduced as though it was at
the centre of a hard disk of a certain radius — although that he is referring
here to the process on a static cylinder: as discussed below touching circles
is an adequate model provided the cylinder is allowed to grow in diameter.
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Fig. 9. A bifurcation tree for possible phyllotactic evolutions. From AMT/MAN /4.
© PN Furbank.

(0+2) — (1 + 2) | An unlikely move

(0+2) — (2 + 2) | Quite possible, with [indecipherable]

(0+2) — (2 + 3) | Quite poss. and favoured by a / component (eg some zy-
gomorphy)

(14+1) — (24 2) |Almost inevitable

(2+2) — (24 4)|In competition. (242) — (24 3) is favoured by 5 < 6, but
(2+2)—=(24+3)|(2+2) — (2+4) by 6 = 2 + 4. Latter probably favoured
by fast [unreadable] of conc.

(1+2) — (24 3) |Requires a breakdown process. Can probably only fail by
too quick growth, leading to stationary patterns?

Table 1. From AMT/MAN/M/8. Parastichy transitions annotated by Turing with
likelihood of occurrence. (¢ PN Furbank.

There is clearly a concern here with the dynamic stability of given phyl-
lotactic patterns and their dependence on the rate of growth of the morpho-
genetic arena. In identifying the Fibonacci transitions as the probable ones,
he is trying to identify reasons why the Hypothesis of Geometrical Phyllotaxis
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Fig. 10. Possible sphere packing parameters as a function of geometry. Detail from
Figure 1T of Tafel TT of van Tterson [30]. © Kluyver Laboratory for Biotechnology
Archives of Delft University (www.beijerinck.bt.tudelft.nl); used with permission.

might be true. It may be relevant that quite a large number of the archive
sheets (unpublished in Saunders [24]) are concerned with the dynamics and
the stability of lattices: see Swinton [26] for more details.

7.1 Turing’s progress

As the Turing’s theory progresses from reaction-diffusion to lattices and then
to parastichy transitions, the surviving documents becomes sparser and less
coherent, so assessments of his progress between 1951 and his death on June
7th 1954 become correspondingly more speculative. There is no concrete
archival support for that claim in 1951 to explain fir cone patterns. A pos-
sible explanation is that Turing saw clearly that he had a spot generation
mechanism and assumed, incorrectly, that this would be sufficient to gener-
ate Fibonacci lattices. There is a quote from a Ferranti engineer, from before
the summer of 1953, that

... with a random starting disturbance the final configuration was
displayed on the MkI’s monitors. It was always of interest to those of
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us watching to see what Fibonacci configuration would result. [4, p.
65].

Turing was certainly producing spotty patterns by 1953. It seems plau-
sible that what the engineer saw was actually more similar to those than
to explicitly Fibonacci patterns. Support from this comes from a letter of
Turings of May 1953:

According to the theory I am working on now there is a continu-
ous advance from one pair of parastichy numbers to another, during
the growth of a single plant ... You will be inclined to ask how one
can move continuously from one integer to another. The reason is this
- on any specimen there are different ways in which the parastichy
numbers can be reckoned; some are more natural than others. Dur-
ing the growth of a plant the various parastichy numbers come into
prominence at different stages. One can also observe the phenomenon
in space (instead of in time) on a sunflower. It is natural to count the
outermost florets as say 21+34, but the inner ones might be counted
as 8+13. Church is hopelessly confused about it all, and I don’t know
any really satisfactory account, though I hope to get myself one in
about a years time. [8]

None of the fragmentary material can be reliably dated; some of the probably
relevant computer printouts are dated!® May 24th, but give no year. In addi-
tion several years of computing would have generated rather a lot of output,
so the fact that all we have is a few sheets, and those not obviously archival
records, hints that what we do have is the end of a series of ephemeral doc-
uments. So a speculation would date the latest analysis to within weeks of
Turing’s death. It is then likely that this was what Gandy was referring to
when he wrote of hearing of Turing’s individual and unmethodical compu-
tations. In considering Turing’s state of mind at his suicide, Hodges wrote
that

Possibly the morphogenetic work had turned out plodding and
laborious. It was three years since he had claimed he could account
for the fir cone pattern and he had still not achieved it when he died
[10, p. 492].

The morphogenetic work was not plodding: the bifurcation tree of paras-
tichy numbers was new and, as discussed below, on the right lines. The com-
puter simulations, even for the author of Computable Numbers (or more rel-
evantly of the first programming manual), must though have been laborious
and frustratingly slow to get right. Although he was apparently producing
at least some meaningful output, Turing might have become the first to ap-
preciate the sheer craft needed by computational biologists. Probably Turing

15 Eg MAN/N/7
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had not, indeed, accounted for Fibonacci phyllotaxis when he died, but he
had got much further, and in the right direction, than he was in 1951.

8 Turing and modern approaches to Fibonacci
phyllotaxis

At Turing’s death, all of his post 1951 developments remained unpublished.
Hoskin, Newman and Gandy tried to prepare what could be prepared for
publication, but none of them had any particular expertise in the problem.
Bernard Richards might have developed his MSc with Turing (on reaction
diffusion systems on a sphere) into this broader question, but moved on to
other areas [23]. Unsurprisingly the work remained almost unknown. The only
citation I've found before 1992 came at one of Waddington’s select meetings
on theoretical biology held at Lake Como in the late 1960s, where Scriven
described his

...treatment, developed from Turing’s paper on morphogenesis,
based on transport processes to move things from place to another.
(Robin Grands [sic] has a Turing manuscript for the nonlinear case
treatment) [32, p. 321].

Turing had discussed the morphogenesis work with Wardlaw, who sub-
sequently published several papers explaining and discussing the reaction-
diffusion hypothesis (Wardlaw [33,34]). Wardlaw is reported to have main-
tained a long interest in Fibonacci phyllotaxis though it seems to have gone
unpublished. 6

The subsequent literature of phyllotaxis is substantial, and I have been
primarily guided by the various surveys in Jean and Barabe [12] for this
section. Some of these subsequent studies of phyllotaxis concentrated on, and
gave more rigorous mathematical theories of, the ‘static’ phyllotactic problem
of the classification of lattices, and, for example, the relationship between the
divergence angle and the visible opposed parastichies (Adler et al. [1], Jean
[11]). A second strand used numerical approaches based on dynamic models
in which the appearance of a new point was governed by a rule which was
some variant of ‘far away from previous points’. Some even used reaction-
diffusion equation to do so (Veen and Lindenmayer [31] were the first to do
this).

The earliest, clearest and most undercited explanation for Fibonacci phyl-
lotaxis was developed by Mitchison [18]. Writing in Science, Mitchison deftly
used the simple touching circles hypothesis for new points appearing in the
cylindrical region formed by the apical meristem, and identified the key paras-
tichies as what Jean would later call the visible opposed parastichies, those

1% Email from Vidyanand Nanjundiah, 20th March 2003; Professor Nanjundiah be-
lieves Wardlaw talked on this topic at a 1974 Mosbach Colloquium.
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winding in opposite directions. He then showed that as the diameter of that
region slowly changed, the bifurcations of parastichy number would, as Tur-
ing saw, replace one of the pair (m,n) with m < n by m + n, and that as
Turing hypothesised but failed to demonstrate, that the new visible opposed
pair would have to be (n, m+n) eflectively because the pair (m, m-+n) would
both wind in the same direction. This general hypothesis about which of two
possible choices will be made at each stage, combined with the necessary geo-
metric clarity to see that there are only two choices, and a dynamical system
which can generate movement through the bifurcation diagram, is what is
needed to explain Fibonacci phyllotaxis.

Through the 1990s other workers exhibited lattice Fibonacci structures
experimentally (e.g. Douady and Couder [9, I]) computationally (e.g. Douady
and Couder [9, IT]) or analytically (e.g. Kunz and Rothen [15]; Levitov [16];
Atela et al. [3]). This new generation used a variety of models, but the com-
mon feature is that each exhibited a bifurcation tree corresponding to all
possible parastichy pairs, and showed, by local analysis at each bifurcation
point, that the single branch traversable by continuous variation of a bifurca-
tion parameter was the Fibonacci branch (Figure 11). This local constraint
is what Turing would have called the Hypothesis of Geometrical Phyllotaxis.

Fig. 11. All possible parastichy pairs can occur, but only one branch is continu-
ously reachable from the simplest symmetric case. Thin lines: theoretically possible
parastichies; triangles: observed parastichies found in numerical simulations from
various starting conditions. From Douady and Couder [9]. © Academic Press 1996
COPYRIGHT NOT CLEARED.
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9 Conclusion

This paper has concentrated on Turing’s approach to the specific problem of
Fibonacci phyllotaxis, and left largely undiscussed his wider legacy in math-
ematical biology. There has been a failure of reaction-diffusion models to
sustain much favour with developmental biologists, combined with a persis-
tent ability to remain in mathematical accounts of the subject. Fox Keller[13]
has recently given an insightful and informed account of this state of affairs.
Yet reaction diffusion models only provide one possible mechanism for the
spot creation process. It should not be thought that a failure to exhibit a
morphogen is a failure for the generic process of pattern generation that he
was beginning to grasp.

Despite his confident words in 1951, Turing probably did not have an
explanation for Fibonacci phyllotaxis either then or later. But he came close.
As we have seen, such patterns can arise naturally as the product of iterated
creation processes with simple rules. In his reaction diffusion systems he
had the first and one of the most compelling models mathematical biology
has devised for the creation process. In his formulation of the Hypothesis of
Geometrical Phyllotaxis, work done by 1954 but not published until 1992,
he expressed simple rules adequate for the appearance of Fibonacci pattern.
In his last, quite unfinished work he was searching for plausible reasons why
those rules might hold, and it seems only in this that he did not succeed. It
would take half a lifetime before others, unaware of his full progress, would
retrace his steps and finally pass them in pursuit of a rather beautiful theory.
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